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I investigate critical and timeless questions in artificial intelligence (AI): how can we as humans write specifications
that meet our objectives, how can we build systems that learn from those specifications, and how can we know that the
behaviors of those systems are aligned to our specifications? The field of AI suffers from rampant underspecification,
overspecification, and misspecification, creating a grand challenge to safely align AI with human goals. This challenge
spans the remit from niche AI tasks to large foundation AI models that will affect billions of people. It will continue to
exist as more AI models are deployed throughout society: alignment problems will reach every sector of the economy.

Writing specifications for AI systems is critical yet notoriously hard because these systems lack common sense reasoning,
making it easy to write specifications that result in unintended and potentially dangerous side effects. I have studied how
AI experts often write erroneous specifications; for example, in one of my studies, over half of experts wrote erroneous
specifications for a trivial setting. I am currently designing mechanisms to prevent experts from making these errors.
In systems like ChatGPT, the AI learns a specification from non-experts’ preferences over AI outputs. Here, too, my
studies have shown that non-experts’ preferences are often misinterpreted. I have identified how assumptions about human
preferences can be flawed, and how this process should be revised to prevent misinterpretation. Humans must also learn
about the capabilities and limitations of AI decision-making—these must be transparent so that humans can assess when
and when not to rely on an AI system. In service of this requirement, I have designed methods that expose information-rich
examples of AI system behaviors to humans, and I have studied cognitive science theories on how humans learn new
concepts to let them better comprehend AI systems. I have shown how my methods can be used to revise specifications.

In service of human-AI alignment, I develop new mathematical models and algorithms, and conduct empirical analyses.
I am a reinforcement learning researcher with expertise in learning from human feedback. I use Bayesian inference
methods [6, 24] and learn models from human data [16, 15], as both approaches can help model human decision-making in
the face of uncertainty. I run large-scale computational experiments to inspect and assess the correctness of hypotheses and
claims about learning systems [2, 25, 23]. I regularly design human studies [2, 3, 5, 12] as simulated models of users are
insufficient to assess human-AI interactions, and I use qualitative research methods like thematic analysis to understand
both the outcomes of human decision-making and the reasoning process [2, 11]. I often consider robotics as an application.

Given the impact of new AI tools and their errors, governments around the world are scrambling to decide whether and
how to establish guardrails in their development and use. In the U.S., the Biden Administration issued an executive order
to this effect. I am currently working as a AAAS AI Policy Advisor in the U.S. Senate to implement this order for the
Banking, Housing, and Urban Affairs committee. I have also co-authored an IEEE standard for autonomous systems that
defines transparency as a measurable and testable property for safety certification agencies to assess AI systems [20, 21].
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Figure 1: A sketch of my research. A hu-
man specifies an objective with a reward
function ri [2] or other signal like a dataset
Di of preferences [16, 15]. The robot mod-
els the human MH to interpret the reward
function, e.g., inferring a new reward func-
tion r∗ given ri and MH . The robot learns
a behavioral policy πi, then presents expos-
itory examples of its behavior to help the
human inspect it, for example as trajecto-
ries [6, 24, 3]. The human updates their
conceptual model of the robot (MR) [4] and
the reward function ri iteratively.
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Specifying Behaviors through Reward Functions
Reinforcement learning (RL) is a promising approach for building robot and AI systems. Reward functions are an
exceptionally flexible framework for specifying behaviors, and, as such, there is tremendous optimism about RL’s potential,
with some researchers even arguing that reward can specify the nature of intelligence [19]. RL’s usefulness is nonetheless
limited by the difficulty of specifying the reward function, which can be misspecified or underspecified [1]. While there is
a push toward learning reward functions, manually-specified reward functions remain commonplace and have recently
been used to achieve tremendous successes—for example, to outrace human champions in Gran Turismo [22] and drone
competitions [13]. I have studied human reward design processes [2]. I first showed that reward functions can be easily
overfit to learning algorithms, wherein the reward function is overloaded to both encode the desired behavior and also
facilitate fast and successful learning for a specific algorithm or hyperparameter choice, at the expense of interoperability
and generality. Through a user study, I confirmed that this problem of overfitting equally manifests with human experts
designing the reward functions. While I confirmed this problem of overfitting is indeed persistent, I was also surprised to
discover that—in a trivial gridworld environment, the type of environment you might encounter in an RL101 class—the
majority of expert humans wrote reward functions that failed to encode the task. I attribute these failures to the mismatched
interpretations of the reward function between the human designers and the goals of RL algorithms writ large. Humans
view reward functions with a myopic lens, as a mechanism for encoding the relative goodness of each possible state, but
this differs from the RL objective of maximizing summed and discounted reward. This study raises the questions: how can
we enable humans to write better reward functions, and how can we enable AIs to better interpret flawed reward functions?

Specifying Behaviors through Preferences
A complementary approach for crafting specifications for RL is to learn a reward function from non-expert human feedback
like preferences. This approach has recently seen wide success as the key innovation in ChatGPT [18, 8]. My research
shows that the inductive biases we place on learning reward functions from such data must be reconsidered if we are to learn
correct reward functions. In the common implementations of RL from human feedback (RLHF), there is an underlying
assumption that preferences are determined by a segment’s partial return: the summed discounted reward over a segment.
As Figure 2 shows, this assumption is patently false. My collaborators and I propose an alternative inductive bias: that
human preferences are determined by a segment’s regret, a measure of deviation from optimality [16]. We validate this new
framing through a user study, computational experiments, and theoretical proof. We show that underlying reward functions
cannot be generally recovered using the partial return model, while they can with our proposed regret model. We also
collect a dataset of human preferences and find that these preferences are better explained by our proposed regret model.
We subsequently study the consequences of embedding this incorrect assumption in learning systems [15]. This shows the
importance of accurately modeling human decision-making and of designing correct inductive biases when interpreting
noisy data. There are implications for manual reward function design, too: I plan to treat the manually-designed reward
function as an observation about the intended reward function, similar to Hadfield-Menell et al.’s inverse reward design [10].
In such a system, we must proceed with caution in the design of the prior encoding common specification errors.

Suboptimal segment Optimal segment

Equal partial return 
Higher regret

Equal partial return 
Lower regret

Figure 2: Modeling human decision-making priors is crit-
ical for alignment, yet popular methods make significant
mistakes. Current RL from human feedback approaches
consider both of these trajectories to be equally good,
though intuitively the right is better. These approaches
assume that human preferences are determined by partial
return, the summed discounted reward [8, 18]. This as-
sumption is wrong: a segment that navigates away from a
goal has equal partial return to one that navigates toward the
goal. We show that regret—a measure of suboptimality—
is a better model of human preference that permits better
inference of the intended reward function [16].
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(a) Inspect Classifier Behaviors [6] (b) Inspect Robot Behaviors [24]

Figure 3: AI behaviors must be inspected, e.g., by viewing examples, but finding informative examples is difficult. I
introduce a method to do this by importance sampling the posterior of generative models [6, 24]. In Figure 3a, we find a
50% Corgi and 50% Bread example (C) to understand a decision boundary. In Figure 3b, we inspect a robot controller. We
find the robot cannot reach the target red ball on the right side of the table (top). Once inspected, we find that increasing the
collision clearance of the table’s divider leads to success in reaching targets on either side of the divider (bottom).

Inspecting Behaviors
After writing a specification and using some algorithm to optimize it, how can a person assess whether a robot or an AI has
learned the behavior that meets their needs and expectations? Is it aligned to their intent? The most common practice is
to observe examples of the robot acting in the world in random or a fixed set of environments. However, without adding
structure and discipline to this practice, the observation process is limited in usefulness. I propose that we instead support
humans in searching for examples that communicate specific targeted behaviors. I first introduced a method for inspecting
the behaviors of neural network or other classifiers. In Bayes-TrEx [6], a user specifies a prediction target (e.g., ambiguous
across two classes) and a generative model, and then Bayesian inference finds examples that meet the prediction target.
Bayes-TrEx helps with debugging and understanding neural networks, as it can be used to find ambiguous examples
to communicate class boundaries or highly confident incorrect classifications to communicate systematic failures. We
subsequently adapted this approach to create RoCUS, a method for debugging and improving robot controller behaviors by
finding environments in which interesting behavior occurs [24]. We demonstrated that RoCUS can find and revise bugs in
specifications in a dynamical system setting. RoCUS can also be used to assess the behaviors learned through RL with a
reward function specification; this method can be applied to help the human iterate on their reward function design.

Building Conceptual Models
How do humans come to understand the behavioral patterns encoded in a reward function, or learned through a reward
function? More generally, how do humans maintain and mitigate uncertainty about their beliefs about AI systems?
This uncertainty relates to the human ability to form conceptual models, which are abstract models used for reasoning.
Classroom-tested theories of human concept learning from the learning sciences community provide a rough blueprint for
how to help people build and update accurate and flexible conceptual models [17, 9], and I show how these theories can be
leveraged for human-robot interaction [4, 12]. These theories assert that conceptual models are best formed by experiencing
examples that follow highly structured patterns of variance and invariance [17], and by experiencing structurally-aligned
analogous examples that support rapid knowledge transfer [9]. When interacting with a robot or an AI system, a person
will inevitably develop a conceptual model of the system’s behaviors. But, without structure to their learning, the resulting
conceptual model may be incorrect or inflexible. I have studied how these theories of human concept learning should be
adapted for human-robot interaction: my analysis of 35 works showed ad-hoc incorporation of some of these patterns [4],
but that the community still has many blind spots. For example, it is exceedingly rare to show counterexamples of robot
capabilities, but counterexamples are essential for establishing the bounds of capabilities. My preliminary follow-up work
confirms that viewing counterexamples of robot behaviors improves conceptual model formation [12]. My work provides
design guidance for better structuring human observations of both AI system and robot learned behaviors.
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Figure 4: Humans must correctly model behaviors of AI agents like robots such that they can effectively collaborate
with the agent and potentially revise an incorrect specification [4, 12]. My research shows that this modeling can be
achieved efficiently by experiencing contrast: an alternative robot policy that delineates currently specified behaviors from
alternatives (left). Experiencing contrast first helps the human to generalize behavior predictions to new settings (right).

Future Directions
How can we better interpret erroneous specifications and prevent humans from making errors? Specifications for AI
systems will inevitably suffer from errors. By analyzing common pitfalls and errors made by both experts and non-experts,
I aim to develop mechanisms that compensate for these mistakes by informing the inference of the intended specification.
This line of proposed work would build upon Hadfield-Menell et al.’s inverse reward design, wherein each given reward
function is viewed as an observation about the intended reward function [10]. Alongside compensating for errors in
specifications, my research aims to prevent humans from making errors in the first place. This requires thinking about AI
specification best practices—for example, researchers have shown benefits from considering the expected return of optimal
and suboptimal trajectories and ensuring the ordering of preferences of these trajectories match the human’s intentions [14].
How can we assess the alignment of AI systems? Even if a specification is aligned to human intent, at least with current
reinforcement learning algorithms, there is no guarantee that the learned behavioral policy is perfectly optimized. We need
to design methods to assess whether the learned policy expresses the same preferences as are encoded in the specification—
to test the alignment of the system (e.g., [7]). For instance, the research community (me included) has built a set of tools to
analyze AI behaviors (exemplars, critical states, policy summaries, probes, etc.) but this limited toolset may not yet allow
humans to assess alignment, and true progress must judge their usefulness against the higher bar of verification.
How can we design AI systems to be governable? Currently, a leading method for governing large AI systems is RLHF.
This training step allows us to establish safeguards by preventing these systems from expressing undesirable behaviors,
but it is weak and can be ‘jailbroken’. In my role as an AI Policy Advisor for the Senate Banking, Housing, and Urban
Affairs committee, I oversee financial services. Given their fiduciary responsibility, financial service providers would be
well-advised not to deploy a ChatBot that offered financial advice. RLHF does not guarantee that constraints cannot be
undermined and finetuning largely erases constraints. I wish to design mechanisms to govern the behaviors of AI systems.
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