
BAYES-TREX: a Bayesian Sampling Approach to
Model Transparency by Example

Serena Booth*, Yilun Zhou*, Ankit Shah, Julie Shah
*Equal Contribution

CSAIL, Massachusetts Institute of Technology
{serenabooth, yilun, ajshah, julie a shah}@csail.mit.edu

Abstract

Post-hoc explanation methods are gaining popularity for in-
terpreting, understanding, and debugging neural networks.
Most analyses using such methods explain decisions in re-
sponse to inputs drawn from the test set. However, the test set
may have few examples that trigger some model behaviors,
such as high-confidence failures or ambiguous classifications.
To address these challenges, we introduce a flexible model
inspection framework: BAYES-TREX. Given a data distribu-
tion, BAYES-TREX finds in-distribution examples which trig-
ger a specified prediction confidence. We demonstrate several
use cases of BAYES-TREX, including revealing highly con-
fident (mis)classifications, visualizing class boundaries via
ambiguous examples, understanding novel-class extrapola-
tion behavior, and exposing neural network overconfidence.
We use BAYES-TREX to study classifiers trained on CLEVR,
MNIST, and Fashion-MNIST, and we show that this frame-
work enables more flexible holistic model analysis than just
inspecting the test set. Code and supplemental material are
available at https://github.com/serenabooth/Bayes-TrEx.

1 Introduction
Debugging, interpreting, and understanding neural networks
can be challenging (Doshi-Velez and Kim 2017; Lipton
2018; Odena et al. 2019). Existing interpretability methods
include visualizing filters (Zeiler and Fergus 2014), saliency
maps (Simonyan, Vedaldi, and Zisserman 2013), input per-
turbations (Ribeiro, Singh, and Guestrin 2016; Lundberg
and Lee 2017), prototype anchoring (Li et al. 2018; Chen
et al. 2019), tracing with influence functions (Koh and Liang
2017), and concept quantification (Ghorbani, Wexler, and
Kim 2019). While some methods analyze intermediary net-
work components such as convolutional layers (Bau et al.
2017; Olah, Mordvintsev, and Schubert 2017), most meth-
ods instead explain decisions based on specific inputs. These
inputs are typically selected from the test set, which may
lack examples that lead to highly confident misclassifica-
tions or ambiguous predictions. Thus, it may be challenging
to extract meaningful insights and attain a holistic under-
standing of model behaviors by using only test set inputs.
Finding and analyzing inputs that invoke the gamut of model
behaviours would improve model transparency by example.

Copyright © 2021, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Figure 1: Given a Corgi/Bread classifier, we generate predic-
tion level sets, or sets of examples which trigger a target pre-
diction confidence (e.g., pCorgi = pBread = 0.5). Perturbing
an arbitrary image to trigger the target confidence is one way
of finding such examples, as shown in (A). However, such
examples give little insight into the typical model behavior
because they are unrealistic and unlikely. For more insight,
BAYES-TREX explicitly considers a data distribution (gray
shading on the bottom plots) and finds in-distribution exam-
ples in a particular level set (e.g., likely Corgi (B), likely
Bread (D), or ambiguous between Corgi and Bread (C)).
Bottom left: the classifier level set of pCorgi = pBread = 0.5
overlaid on the data distribution. Example (A) is unlikely to
be sampled by BAYES-TREX due to near-zero density un-
der the distribution, while example (C) is likely to be sam-
pled. Bottom right: Sampling directly from the true poste-
rior is infeasible, so we relax the formulation by “widening”
the level set. By using different data distributions and con-
fidences, BAYES-TREX can uncover examples that invoke
various model behaviors to improve model transparency.

Figure 2: BAYES-TREX finds a CLEVR scene which is in-
correctly classified as containing a sphere. The generated ex-
ample (left) is composed of only cylinders and cubes, but the
classifier is 97.1% confident this scene contains one sphere.
The SmoothGrad (Smilkov et al. 2017) saliency map high-
lights the small red cylinder as the object that is confused for
a sphere. When we remove it, the classifier’s confidence that
the scene contains one sphere drops to 0.1%.

To create new examples beyond the scope of the test set,
BAYES-TREX takes a data distribution—either manually
defined or learned with generative models—and finds in-
distribution examples that trigger various model behaviors.
BAYES-TREX finds examples with target prediction confi-
dences p by applying Markov-Chain Monte-Carlo (MCMC)
methods on the posterior of a hierarchical Bayesian model.
For example, Fig. 1 shows a Corgi/Bread classifier. For dif-
ferent p-level set targets (e.g., pCorgi = pBread = 0.5),
BAYES-TREX can find examples where the model is highly
confident in the Corgi class, in the Bread class, or ambigu-
ous between the two. We use BAYES-TREX to analyze clas-
sifiers trained on CLEVR (Johnson et al. 2017) with a manu-
ally defined data distribution, as well as MNIST (LeCun and
Cortes 2010) and Fashion-MNIST (Xiao, Rasul, and Voll-
graf 2017) with data distributions learned by variational au-
toencoders (VAEs) (Kingma and Welling 2013) or genera-
tive adversarial networks (GANs) (Goodfellow et al. 2014).

BAYES-TREX can aid model transparency by example
across several contexts. Each context requires a different
data distribution and a specified prediction confidence target.
For example, BAYES-TREX can generate ambiguous exam-
ples to visualize class boundaries; high-confidence misclas-
sification examples to understand failure modes; novel class
examples to study model extrapolation behaviors; and high-
confidence examples to reveal model overconfidence (e.g.,
in domain-adaptation). In all of these use cases, the discov-
ered examples can be further assessed with existing local
explanation techniques such as saliency maps (Fig. 2).

The main current alternative to BAYES-TREX is to in-
spect a model by using test set examples. As a baseline
comparison, we search for highly confident misclassifica-
tions and ambiguous examples in the (Fashion-)MNIST and
CLEVR test sets. We find few such test set examples meet
these constraints, and the majority of these can be attributed
to mislabeling in the dataset collection pipeline rather than
misclassification by the model. In contrast, BAYES-TREX
consistently finds more highly confident misclassified and
ambiguous examples, which enables more flexible and com-
prehensive model inspection and understanding.

2 Related Work
2.1 Model Transparency
Broadly, transparency is achieved when a user can develop
a correct understanding and expectation of model behav-
ior. One common technique for developing transparency is
the test set confusion matrix: this matrix expresses the clas-
sifier’s tendency of mistaking one class for another. Other
transparency methods try to “open” black-box models—for
example, by visualizing convolutional filters through opti-
mization (Erhan et al. 2009; Olah, Mordvintsev, and Schu-
bert 2017) or image patches (Bau et al. 2017). Like BAYES-
TREX, other transparency methods communicate model be-
haviors through examples—for example, with counterfactu-
als (Antorán et al. 2020; Kenny and Keane 2020) or with
student-teacher learning examples (Pruthi et al. 2020).

Some transparency methods aim to explain a model’s re-
sponse to an individual input. For example, saliency maps
compute a heat map over the input that represents the im-
portance of each pixel (Simonyan, Vedaldi, and Zisserman
2013; Zeiler and Fergus 2014). Importantly, these input-
based methods require a two-stage pipeline: finding inter-
esting inputs → explaining the model responses (e.g., with
saliency maps). Current efforts are focused on the second
stage with inputs simply retrieved from the test set. To the
best of our knowledge, BAYES-TREX is the first work ded-
icated to the first stage of finding interesting inputs. The ex-
amples uncovered by BAYES-TREX can be used with any
input-based method for further analysis (Fig. 2 and App. K).

2.2 Model Testing
TENSORFUZZ (Odena et al. 2019) is a fuzzing test frame-
work for neural networks which finds inputs that achieve a
wide coverage of user-specified constraints. TENSORFUZZ
is similar to BAYES-TREX in that both methods aim to
find examples that elicit certain model behaviors. While
TENSORFUZZ is designed to find rare inputs that trigger
edge cases such as numerical errors, BAYES-TREX finds
common, in-distribution examples. As such, BAYES-TREX
is more suitable to help humans develop a correct mental
model of the classifier. SCENIC (Fremont et al. 2019) is a
domain-specific language for model testing by generating
failure-inducing examples. While BAYES-TREX is in part
inspired by SCENIC, its formulation is more flexible.

2.3 Natural Adversarial Examples
One BAYES-TREX use case is uncovering high-confidence
classification failures in the data distribution. This idea
is related to, but different from, natural adversarial at-
tacks (Zhao, Dua, and Singh 2018). Most adversarial at-
tacks inject crafted high-frequency information to mislead
a trained model (Szegedy et al. 2014; Goodfellow, Shlens,
and Szegedy 2014; Nguyen, Yosinski, and Clune 2015), but
such artifacts are non-existent in natural images. Zhao et
al. (2018) instead proposed a method to find natural ad-
versarial examples by performing the perturbation in the la-
tent space of a GAN. While this method finds an example
which looks like a specific input, BAYES-TREX finds high-
confidence misclassifications in the entire data distribution.

2.4 Confidence in Neural Networks
BAYES-TREX can also be used to detect overconfidence
in neural networks. An overconfident neural network (Guo
et al. 2017) makes many mistakes with disproportionately
high confidence. While many approaches aim to address
this network overconfidence problem (Blundell et al. 2015;
Gal and Ghahramani 2016; Lee et al. 2018; Thulasidasan
et al. 2019), BAYES-TREX is complementary to these ef-
forts. Rather than altering the confidence of a neural net-
work, it instead infers examples of a particular confidence.
If the model is overconfident, it may return few, if any, sam-
ples with ambiguous predictions. At the same time, it may
find many misclassifications with high confidence. In our
experiments (Sec. 4.8), we discover that the popular adver-
sarial discriminative domain adaptation (ADDA) technique
produces a more overconfident model than the baseline.

3 Methodology
Given a classifier f : X → ∆K which maps a data point
to the probability simplex of K classes, the goal is to find
an input x ∈ X in a given data distribution p(x) such that
f(x) = p for some prediction confidence p ∈ ∆K . We
consider the problem of sampling from the posterior

p(x|f(x) = p) ∝ p(x) p(f(x) = p|x). (1)

A common approach to posterior sampling is to use
Markov Chain Monte-Carlo (MCMC) methods (Brooks
et al. 2011). However, when the measure of the level set
{x : f(x) = p} is small or even zero, sampling directly
from this posterior using MCMC is infeasible: the posterior
being zero everywhere outside of the level set makes it un-
likely for a random-walk Metropolis sampler to land on x
with non-zero posterior (Hastings 1970), and the gradient
being zero everywhere outside of the level set means that a
Hamiltonian Monte Carlo sampler does not have the neces-
sary gradient guidance toward the level set (Neal et al. 2011).

To enable efficient sampling, we relax the formulation by
“widening” the level set and accepting x when f(x) is close
to the target p (Fig. 1). Specifically, we introduce a random
vector u = [u1, . . . , uK]T , distributed as

ui|x ∼ N
(
f(x)i, σ

2
)
, (2)

where σ is a hyper-parameter.
Instead of directly sampling from Eqn. 1, we can now

sample from the new posterior:

p(x|u = u∗) ∝ p(x)p(u = u∗|x), (3)
u∗ = p. (4)

The hyper-parameter σ controls the peakiness of the re-
laxed posterior. A smaller α makes it closer to the true pos-
terior and makes the distribution peakier and harder to sam-
ple, while a larger α makes it closer to the data distribution
p(x) and easier to sample. As σ goes to 0, it approaches the
true posterior. Formally,

lim
σ→0

p(x|u = u∗) = p(x|f(x) = p). (5)

While the formulation in Eqn. 2 is applicable to arbitrary
confidence p, the dimension of u is equal to the number of

classes, which poses scalability issues for large numbers of
classes. However, for a wide range of interesting use cases
of BAYES-TREX, we can use the following reductions:
1. Highly confident in class i: pi = 1,p¬i = 0. We have

u|x ∼ N
(
f(x)i, σ

2
)
, u∗ = 1. (6)

2. Ambiguous between class i and j: pi = pj = 0.5,
p¬i,j = 0. We have

u1|x ∼ N
(
|f(x)i − f(x)j |, σ2

1

)
, (7)

u2|x ∼ N (min(f(x)i, f(x)j)− max
k 6=i,j

f(x)k, σ
2
2), (8)

u∗1 = 0, u∗2 = 0.5. (9)

σ1 and σ2 are hyperparameters.
In addition, most high dimensional data distributions,

such as those for images, are implicitly defined by a trans-
formation g : Z → X from a latent distribution p(z). Con-
sequently, given

x = g(z), (10)

u|z ∼ N (f(x), σ2), (11)
p(z|u = u∗) ∝ p(z)p(u = u∗|z), (12)

BAYES-TREX samples z according to Eqn. 12 and recon-
struct the example x = g(z) for model inspection.

4 Experiments
4.1 Overview
A key strength of BAYES-TREX is the ability to evaluate
a classifier on any data distribution PD, independent of its
training distribution PC . We demonstrate the versatility of
BAYES-TREX on four relationships between PD and PC
(Fig. 3). With PC = PD (Fig. 3(a)), Sec. 4.3 and 4.4 present
examples that trigger high and ambiguous model confidence
and Sec. 4.5 presents examples that interpolate between two
classes. In Sec. 4.6, we consider PD with narrower support
than PC (Fig. 3(b)), where the support of PD excludes ex-
amples from a particular class. In this case, high-confidence
examples—as judged by the classifier—correspond to high-
confidence misclassifications. In Sec. 4.7 and 4.8, we ana-
lyze the classifier C for novel class extrapolation and do-
main adaptation behaviors with overlapping or disjoint sup-
ports of PC and PD (Fig. 3(c, d)). Representative results are
in the main text; further results are in the appendix.

Figure 3: Different relations between the classifier training
distribution (PC , red) and BAYES-TREX data distribution
(PD, yellow). (a) PC and PD are equal. (b) The support of
PD is a subset of that of PC . (c) PD and PC have overlapping
supports. (d) Supports of PC and PD are disjoint.

Model Dataset FID

VAE
MNIST 72.33
Fashion-MNIST 87.89

GAN
MNIST 11.83
Fashion-MNIST 29.44

Table 1: Fréchet Inception Distance (FID) for VAE and GAN
models trained on the entire dataset. A lower value indicates
higher quality. Appx. B presents the statistics for all models.

4.2 Datasets and Inference Details
We evaluate BAYES-TREX on rendered images (CLEVR)
and organic datasets (MNIST and Fashion-MNIST). For all
CLEVR experiments, we use the pre-trained classifier dis-
tributed by the original authors1. The transition kernel uses
a Gaussian proposal for the continuous variables (e.g., x-
position) and categorical proposal for the discrete variables
(e.g., color), both centered around and peaked at the current
value. For (Fashion-)MNIST experiments, architectures and
training details are described in Appx. A. For domain adap-
tation analysis, we train ADDA and baseline models using
the code provided by the authors2.

CLEVR images are rendered from scene graphs, on which
we define the latent distribution p(z). Since the (Fashion-
)MNIST groundtruth data distribution is unknown, we es-
timate it using a VAE or GAN with unit Gaussian p(z).
These learned data distribution representations have known
limitations, which may affect sample quality (Arora and
Zhang 2017). Table 1 lists the Fréchet Inception Distance
(FID) (Heusel et al. 2017) for two VAE and GAN models,
with the full table in Appx. B. The FID scores show the
GANs generate more representative samples than the VAEs.

We consider two MCMC samplers: random-walk
Metropolis (RWM) and Hamiltonian Monte Carlo (HMC).
We use the former in CLEVR where the rendering function
is non-differentiable, and the latter for (Fashion-)MNIST.
For HMC, we use the No-U-Turn sampler (Hoffman and
Gelman 2014; Neal et al. 2011) implemented in the prob-
abilistic programming language Pyro (Bingham et al. 2018).
We choose σ = 0.05 for all experiments. Alternatively, σ
can be annealed to gradually reduce the relaxation.

Selecting appropriate stopping criteria for MCMC meth-
ods is an open problem. State-of-the-art approaches require
a gold standard inference algorithm (Cusumano-Towner and
Mansinghka 2017) or specific posterior distribution proper-
ties, such as log-concavity (Gorham and Mackey 2015). As
neither of these requirements are met for our domains, we
select stopping criteria based on heuristic performance and
cost of compute (Appx. I). CLEVR requires GPU-intensive
rendering, so we stop after 500 samples. (Fashion-)MNIST
samples are cheaper to generate, so we stop after 2,000 sam-
ples. Empirically, we find each sampling step takes 3.75 sec-
onds for CLEVR, 1.18s for MNIST, and 1.96s for Fashion-
MNIST, all on a single NVIDIA GeForce 1080 GPU.

1https://github.com/facebookresearch/clevr-iep
2https://github.com/erictzeng/adda

(a) p5 Spheres = 95.7% (b) p2 Blue Sph. = 91.1%

(c) MNIST (d) Fashion-MNIST

Figure 4: High-confidence samples, which pass the smoke
test for CLEVR, MNIST, and Fashion-MNIST T-shirt,
trousers, pullover, and dress. More examples in Appx. C.

4.3 High Confidence
As an initial smoke test, we evaluate BAYES-TREX by find-
ing highly confident examples. (Fashion-)MNIST data dis-
tributions are learned by GAN. Fig. 4 depicts samples on the
three datasets. Additional examples are in Appx. C.

4.4 Ambiguous Confidence
Next, we find ambiguous (Fashion-)MNIST examples for
which the classifier has similar prediction confidence be-
tween two classes, using data distributions learned by a
VAE. Fig. 5 shows ambiguous examples from each pair of
classes (e.g. 0v1, 0v2, ..., 8v9). Note the examples presented
are ambiguous from the classifier’s perspective, though
some may be readily classified by a human. Not all pairs
result in successful sampling: for example, we were unable
to find an ambiguous example with equal prediction confi-
dence between the visually dissimilar classes 0 and 7. These
ambiguous examples are useful for visualizing and under-
standing class boundaries; Appx. D presents a supporting
class boundary latent space visualization. Blended ambigu-
ous examples have previously been shown to be useful for
data augmentation (Tokozume, Ushiku, and Harada 2018).
While these generated ambiguous examples may be simi-
larly useful, we leave this exploration to future work.

BAYES-TREX can also find examples which are ambigu-
ous across more than two classes; Fig. 6 presents samples
that are equally ambiguous across all 10 MNIST classes. All
these images appear to be very blurry and not very realistic.
This is intuitive: even for a human, it would be hard to write
a digit in such a way that it is equally unrecognizable across
all 10 classes. Details about the sampling formulation and
visualizations are presented in Appx. D.

In general, for ambiguous examples, we observed only
rare successes with data distributions learned by a GAN,
which generates sharper and more visually realistic images
than a VAE. There are two potential explanations:

1. GAN-distributions prevent efficient MCMC sampling.

Figure 5: Each entry of the matrix is an ambiguous MNIST
or Fashion-MNIST example for the classes on its row and
column. Blacked-out cells indicate sampling failures. Exam-
ples on the outermost edges of the matrix are representative
examples from each class (e.g., 0-9 for MNIST).

Figure 6: Samples of uniformly ambiguous predictions.

2. The classifier rarely makes ambiguous predictions on
sharp and realistic images.

To experimentally evaluate the second explanation, we train
a classifier to be consistently ambiguous between class i and
i + 1 for an image of digit i (wrapping around at 10 = 0)
using the following KL-divergence loss:
l(y, f(x)) = KL(py, f(x)), (13)

py,i =

{
0.5 i = y or i = (y + 1) mod 10,
0 otherwise.

(14)

Using this classifier, we sample ambiguous examples for
0v1, 1v2, ..., 9v0. Sampling succeeds for all ten pairs, even
when using the same GAN model that rarely succeeded in
the prior experiment. Fig. 7 presents the 0v1 samples and
predicted confidence by this modified classifier, and the re-
maining pairs are visualized in Appx. E. Given this sampling
success, we conclude that the second explanation is correct.

BAYES-TREX is also unable to generate ambiguous ex-
amples for CLEVR with the manually defined data distri-

Figure 7: 0v1 ambiguous samples and confidence plot with
the GAN distribution and always ambiguous classifier. This
shows successful sampling and supports hypothesis 2.

bution. Given that the pre-trained classifier only achieves
≈60% accuracy, the result suggests that the model is likely
overconfident. Indeed, this has previously been observed in
similar settings (Kim, Ricci, and Serre 2018).

4.5 Confidence Interpolation
BAYES-TREX can find examples that interpolate between
classes. In Fig. 8, we show MNIST samples which interpo-
late from (P8 = 1.0, P9 = 0.0) to (P8 = 0.0, P9 = 1.0) and
Fashion-MNIST samples from (PT-shirt = 1.0, PTrousers =
0.0) to (PT-shirt = 0.0, PTrousers = 1.0) over intervals of 0.1,
with a VAE-learned data distribution.

The interpolation between two very different classes re-
veal insights into the model behavior. For example, the in-
terpolation from 8 to 9 generally shrinks the bottom circle
toward a stroke, which is the key difference between dig-
its 8 and 9. For Fashion-MNIST, the presence of two legs
is important for trousers classification, even appearing in
samples with (pT-shirt = 0.9,pTrousers = 0.1) (second col-
umn). By contrast, a wider top and the appearance of sleeves
are important properties for T-shirt classification. These two
trends result in most of the interpolated samples having a
short sleeve on the top and two distinct legs on the bottom.

4.6 High-Confidence Failures
With neural networks being increasingly used for high-
stakes decision making, high-confidence failures are one
area of concern, as these failures may go unnoticed. BAYES-
TREX can find such failures. Specifically, if the data distri-
bution (Fig. 3(b)) does not include a particular class, then
the resulting high-confidence examples correspond to high-
confidence misclassifications for that class. For example, in
Fig. 9(a), the CLEVR classifier is highly confident that there
is one cube though there is no cube in the image. In App. K,
the saliency map for Fig. 9(a) reveals that classifier mistakes
the front shiny red cylinder for a cube. Removing this cylin-
der causes the confidence to drop to 29.0%. In addition, such
high-confidence failures can also be used for data augmen-
tation to increase network reliability (Fremont et al. 2019).

For (Fashion-)MNIST, a GAN is trained on all data
sans a single class, resulting in the learned data distribu-
tion excluding the given class. Figs. 9(c) and 9(d) depict
high-confidence misclassifications for digits 0-4 in MNIST
and sandal, shirt, sneaker, bag, and ankle boot in Fashion-

Figure 8: Confidence interpolation between digit 8 and 9
for MNIST and between T-shirt and trousers for Fashion-
MNIST. Each of the 11 columns show samples of confi-
dence ranging from [pclass a = 1.0, pclass b = 0.0] (left) to
[pclass a = 0.0, pclass b = 1.0] (right), with an interval of 0.1.
Some confidence plots for MNIST are shown in the middle.

MNIST, respectively. By evaluating these examples, we can
assess how well human-aligned a classifier is. For example,
for MNIST, some thin 8s are classified as 1s and particular
styles of 6s and 9s are classified as 4s. These results seem
intuitive, as a human might make these same mistakes. Like-
wise, for Fashion-MNIST, most failures come from seman-
tically similar classes, e.g. sneaker←→ ankle boot. Less in-
tuitively, however, chunky shoes are likely to be classified as
bags. Additional visualizations are presented in Appx. F.

4.7 Novel Class Extrapolation
It is important to understand the novel class extrapolation
behavior of a model before deployment. For example, dur-
ing training an autonomous vehicle might learn to safely op-
erate around pedestrians, cyclists, and cars. But can we pre-
dict how the vehicle will behave when it encounters a novel
class, like a tandem bicycle? BAYES-TREX can be used to
understand such behaviors by sampling high-confidence ex-
amples with a data distribution that contains novel classes,
while excluding the true target classes (Fig. 3(c, d)).

For CLEVR, we add a novel cone object to the data dis-
tribution and remove the existing cube from it. We sam-
ple images that the classifier is confident to include cubes,
shown in Fig. 10 (a, b). A saliency map analysis in Appx. K
confirms that the classifier indeed mistakes these cones for
cubes. In Appx. G, we assess CLEVR’s novel class extrap-
olation for cylinders and spheres, and similarly show the
model readily confuses cones for these classes as well.

For MNIST and Fashion-MNIST, we train the respective

(a) p1 Cube = 93.5% (b) p2 Cylinders = 90.2%

(c) MNIST (d) Fashion-MNIST

Figure 9: High confidence classification failures. (a):
CLEVR, 1 Cube. Note that no cube is present in the sample.
(b): CLEVR, 2 Cylinders—again, containing no cylinders.
(c) MNIST failures for digits 0-4. 0s are composed of 6s;
1s of 8s; 2s of 0s, and so on. (d) Fashion-MNIST failures
for sandal, shirt, sneaker, bag, and ankle boot. Additional
examples are presented in Appx. F.

classifiers on digits 0, 1, 3, 6, 9 and pullover, dress, san-
dal, shirt and ankle boot classes. We train GANs using only
the excluded classes (e.g., digits 2, 4, 5, 7, 8 for MNIST).
Using these GANs, we find examples where the classifier
has high prediction confidence, as shown in Fig. 10 (c, d).
For MNIST, there are few reasonable extrapolation behav-
iors, most likely due to the visual distinctiveness between
digits. By comparison, some Fashion-MNIST extrapolations
are expected, such as confusing the unseen sneaker class for
sandals and ankle boots. However, the classifier also confi-
dently mistakes various styles of bags as sandals, shirts, and
ankle boots. App. G contains additional visualizations.

4.8 Domain Adaptation
Finally, we use BAYES-TREX to analyze domain adapta-
tion behaviors. We reproduce the SVHN (Netzer et al. 2011)
→ MNIST experiment studied by Tzeng, et al. (2017). We
train two classifiers, a baseline classifier on labeled SVHN
data only, and the ADDA classifier on labeled SVHN data
and unlabeled MNIST data. Indeed, domain adaptation im-
proves classification accuracy: 61% for the baseline classi-
fier on MNIST vs. 71% for the ADDA classifier.

But is this the whole story? To study model performance
in the high-confidence range, we use BAYES-TREX to gen-
erate high-confidence examples for both classifiers with the
MNIST data distribution learned by GAN, as shown Fig. 11.
It appears the ADDA model makes more mistakes in these
images—for example, in the 2nd column in Fig. 11(b), all
images where the classifier is highly confident to be 1 are
actually 0s. To further study this, we hand-label 10 images
per class and compute the classifier accuracy on them. Ta-
ble 3 shows the accuracy per digit class, as well as the over-

(a) p1 Cube = 98.5% (b) p5 Cubes = 92.5%

(c) MNIST (d) Fashion-MNIST

Figure 10: Novel class extrapolation examples. (a, b): For
CLEVR, the novel cone objects are mistaken for cubes. (c,
d): For (Fashion-)MNIST, we train classifiers on subsets of
the data (digits 0, 1, 3, 6, 9 and pullover, dress, sandal, shirt,
and ankle boot), and train GANs with the excluded data.
Samples for which the classifier is highly confident (≈ 99%)
in several target classes are shown (e.g., targets 0, 1, and 9
for MNIST). Additional examples are presented in Appx. G.

all accuracy. This analysis confirms the baseline model is
more accurate than the ADDA model on these samples, sug-
gesting that ADDA is more overconfident than the baseline.
While this result does not contradict the higher overall ac-
curacy of ADDA, it does caution against deploying such do-
main adaptation models without further inspection and con-
fidence calibration assessment.

4.9 Quantitative Evaluation
We quantitatively evaluate the quality of BAYES-TREX
samples by assessing whether the classifier’s prediction con-
fidence matches the specified target on the generated exam-
ples. Table 2 presents the mean and standard deviation of
the confidence on a selection of representative settings, and
Appx. I lists the full set of such evaluations. The predic-
tion confidences are tightly concentrated around the targets,
demonstrating sampler success.

4.10 Test-Set Comparison
Standard model evaluations are typically performed on the
test set. While inspecting test set examples is not an apples-
to-apples comparison for all BAYES-TREX use cases (e.g.
domain adaptation), we study the comparable ones.

Ambiguous Confidence We find ambiguous examples in
the (Fashion-)MNIST datasets where the classifier has con-
fidence in [40%, 60%] for two classes. Out of 10,000 test ex-
amples on each dataset, we find only 12 MNIST examples
across 10 class pairings, and 162 Fashion-MNIST examples
across 12 pairings, as shown in Fig. 12. By comparison,
BAYES-TREX found ambiguous examples for 38 MNIST
pairings and 28 Fashion-MNIST pairings (cf. Fig. 5).

Test Data Target Prediction Confidence

A
M p4 = 1 1.00 ± .01
F pCoat = 1 0.98 ± .02
C p2 Blue Sph. = 1 0.89 ± .25

B M p1 = p7 = 0.5 0.49, 0.49± .02, .03
F p0 = p3 = 0.5 0.48, 0.48± .02, .02

C M p8,p9 = 0.6, 0.4 0.58, 0.37± .04, .04
F p0,p1 = 0.2, 0.8 0.17, 0.79± .04, .04

D
M p8 = 1 0.98 ± .02
F pBag = 1 0.97 ± .03
C p1 Cube = 1 0.93 ± .06

E
M p6 = 1 1.00 ± .01
F pSandal = 1 1.00 ± .01
C p1 Cylinder = 1 0.96 ± .03

F M p5 = 1 1.00 ± .01

Table 2: Mean and standard deviation of the sample predic-
tion confidences. Tests are A: high confidence, B: ambigu-
ous, C: interpolation, D: misclassifications, E: novel classes,
and F: domain adaptation. Data are M: MNIST, F: Fashion,
C: CLEVR. Fashion-MNIST classes 0-9 correspond to T-
shirt, trousers, pullover, dress, coat, sandal, shirt, sneaker,
bag and ankle boot. See Appx. I for full statistics.

0 1 2 3 4 5 6 7 8 9 All

Base 1 .6 1 .7 .5 .9 .9 .7 1 .7 .8
ADDA .9 0 .8 .9 .2 1 .8 1 1 .6 .72

Table 3: Per-digit and overall accuracy among high-
confidence MNIST samples for the baseline and ADDA
models. While ADDA has higher overall accuracy (0.71
vs. 0.61), it performs worse on high-confidence samples
(0.72 vs. 0.80). This suggests overconfidence.

High-Confidence Failures We collect and inspect highly
confident test set misclassifications (confidence ≥ 85%).
For CLEVR, out of 15, 000 test images, the baseline dis-
covers between 0 and 15 examples for each target. Notably,
there are no 2-cylinder misclassifications in the test set, but
BAYES-TREX successful generated some (Fig. 9(b)).

From the 10,000 test examples in (Fashion-)MNIST, 84
MNIST images and 802 Fashion-MNIST images were con-
fidently misclassified. Upon closer inspection, however, we
find that the a large fraction of the failures are actually due
to mislabeling, rather than misclassification. We manually
relabel all 84 MNIST misclassifications and ten Fashion-
MNIST misclassifications per class, except for the trousers
class which only has 3 misclassifiations. We find that the 60
out of 84 MNIST images 42 out of 93 Fashion-MNIST im-
ages are mislabeled, rather than misclassified.

Table 4 gives detailed statistics of the number of gen-
uinely misclassified examples. Given the scene graph data
representation, all CLEVR misclassifications are genuine.
Table 5 visualizes some misclassified vs. mislabeled images,
with additional classes in Appx. J. Identifying mislabeled
examples may be useful for correcting the dataset, but is not
for our task of model understanding.

(a) Baseline examples

(b) ADDA examples

Figure 11: High confidence examples for baseline and
ADDA models, classes 0 to 9, showing more misclassifica-
tions for the ADDA model. More examples in Appx. H.

CLEVR Cl. 1 Sph. 1 Cube 1 Cyl. 2 Cyl.
5 8 15 028/28 #

MNIST Cl. 0 1 2 3 4 5 6 7 8 9
3 3 0 5 3 1 3 4 0 2

0 1 2 3 4 5 6 7 8 9
2 0 9 4 9 1 3 2 1 10

24/84 #

Fashion Cl.
51/93 #

Table 4: Number of genuine high-confidence misclassifica-
tions from test sets. Counts for CLEVR and MNIST are for
the entire test set; counts for Fashion-MNIST are for ten ran-
dom high-confidence misclassifications per class, except for
trousers which only has 3 total misclassifications.

Novel Class Extrapolation In Sec. 4.7 analysis, we find
that the model mistakes some bags for ankle boots. Inter-
estingly, this propensity is not evident from test set evalua-
tions: the test set confusion matrix in Appx. J shows that no
bags are misclassified as ankle boots. This provides further
evidence of the value of holistic evaluations with BAYES-
TREX, beyond standard test set evaluations.

5 Discussion
BAYES-TREX is a Bayesian inference approach for generat-
ing examples that trigger specified target predictions and so
provide insight into model behaviors. These examples can
be further analyzed with downstream interpretability meth-
ods (Fig. 2 and Appx. K). To make BAYES-TREX easier for
model designers to use, future work should develop methods
to cluster and visualize trends in the generated examples, as
well as to estimate coverage of the level set.

For organic data, the underlying data distributions can be
learned with VAEs or GANs. These have known limitations
in sample diversity (Arora and Zhang 2017) and are compu-
tationally expensive to train, especially for high resolution
images. In principle, BAYES-TREX is agnostic to the dis-

Figure 12: Ambiguous examples from the (Fashion-)MNIST
test sets. Compared to those found by BAYES-TREX in
Fig. 5, test set examples have much poorer coverage.

Class Cause Images

0
Misclass.

Mislabeled

1
Misclass.

Mislabeled

2
Misclass. ∅

Mislabeled

Trouser
Misclass. ∅

Mislabeled

Bag
Misclass.

Mislabeled

Table 5: High confidence misclassifications from the test set.
The majority are due to incorrect ground truth labels, not
classifier failures. Full table of all classes in Appx. J.

tribution learner form and can benefit from future research
in this area. In practice, BAYES-TREX is currently limited to
low dimensional latent spaces, as applying MCMC sampling
to high dimensional latent spaces is an open problem.

Finally, while we analyzed only classification models
with BAYES-TREX, it also has the potential for analyzing
structured prediction models such as machine translation or
robotic control. For these domains, dependency among out-
puts would need to be explicitly taken into account. We plan
to extend BAYES-TREX to these areas in the future.

6 Acknowledgements
The authors would like to thank: Alex Lew, Marco
Cusumano-Towner, and Tan Zhi-Xuan for their insights on
how to formulate this inference problem and use probabilis-
tic programming effectively; Christian Muise and Hendrik
Strobelt for helpful early discussions; and James Tompkin
and the anonymous reviewers for comments on the draft. SB
is supported by an NSF GRFP.

7 Ethics Statement
BAYES-TREX has potential to allow humans to build more
accurate mental models of how neural networks make deci-
sions. Further, BAYES-TREX can be useful for debugging,
interpreting, and understanding networks—all of which can
help us build better, less biased, increasingly human-aligned
models. However, BAYES-TREX is subject to the same
caveats as typical software testing approaches: the absence
of exposed bad samples does not mean the system is free
from defects. One concern is how system designers and
users will interact with BAYES-TREX in practice. If BAYES-
TREX does not reveal degenerate examples, these stakehold-
ers might develop inordinate trust (Lee and See 2004) in
their models.

Additionally, one BAYES-TREX use case is to gener-
ate examples for use with downstream local explanation
methods. As a community, we know many of these meth-
ods can be challenging to understand (Olah, Mordvintsev,
and Schubert 2017; Nguyen, Yosinski, and Clune 2019),
misleading (Adebayo et al. 2018; Kindermans et al. 2019;
Rudin 2019), or susceptible to adversarial attacks (Slack
et al. 2020). In human-human interaction, even nonsensical
explanations can increase compliance (Langer, Blank, and
Chanowitz 1978). As we build post-hoc explanation tech-
niques, we must evaluate whether the produced explanations
help humans moderate trust and act appropriately—for ex-
ample, by overriding the model’s decisions.

References
Adebayo, J.; Gilmer, J.; Muelly, M.; Goodfellow, I.; Hardt,
M.; and Kim, B. 2018. Sanity checks for saliency maps. In
NeurIPS, 9505–9515.

Antorán, J.; Bhatt, U.; Adel, T.; Weller, A.; and Hernández-
Lobato, J. M. 2020. Getting a clue: A method for explaining
uncertainty estimates. arXiv preprint arXiv:2006.06848 .

Arora, S.; and Zhang, Y. 2017. Do GANs actually learn the
distribution? An empirical study. arXiv:1706.08224 .

Bau, D.; Zhou, B.; Khosla, A.; Oliva, A.; and Torralba, A.
2017. Network dissection: Quantifying interpretability of
deep visual representations. In Proceedings of the IEEE con-
ference on computer vision and pattern recognition, 6541–
6549.

Bingham, E.; Chen, J. P.; Jankowiak, M.; Obermeyer, F.;
Pradhan, N.; Karaletsos, T.; Singh, R.; Szerlip, P.; Horsfall,
P.; and Goodman, N. D. 2018. Pyro: Deep Universal Proba-
bilistic Programming. JMLR .

Blundell, C.; Cornebise, J.; Kavukcuoglu, K.; and Wierstra,
D. 2015. Weight uncertainty in neural networks. In ICML,
1613–1622.

Brooks, S.; Gelman, A.; Jones, G.; and Meng, X.-L. 2011.
Handbook of markov chain monte carlo. CRC press.

Chen, C.; Li, O.; Tao, D.; Barnett, A.; Rudin, C.; and Su,
J. K. 2019. This looks like that: deep learning for inter-
pretable image recognition. In NeurIPS, 8928–8939.

Cusumano-Towner, M.; and Mansinghka, V. K. 2017.
AIDE: An algorithm for measuring the accuracy of proba-
bilistic inference algorithms. In NeurIPS.

Doshi-Velez, F.; and Kim, B. 2017. Towards a rigorous sci-
ence of interpretable machine learning. arXiv .

Erhan, D.; Bengio, Y.; Courville, A.; and Vincent, P. 2009.
Visualizing higher-layer features of a deep network. Univer-
sity of Montreal 1341(3): 1.

Fremont, D. J.; Dreossi, T.; Ghosh, S.; Yue, X.; Sangiovanni-
Vincentelli, A. L.; and Seshia, S. A. 2019. Scenic: a lan-
guage for scenario specification and scene generation. In
PLDI.

Gal, Y.; and Ghahramani, Z. 2016. Dropout as a bayesian ap-
proximation: Representing model uncertainty in deep learn-
ing. In ICML, 1050–1059.

Ghorbani, A.; Wexler, J.; and Kim, B. 2019. Automat-
ing interpretability: Discovering and testing visual concepts
learned by neural networks. arXiv:1902.03129 .

Goodfellow, I.; Pouget-Abadie, J.; Mirza, M.; Xu, B.;
Warde-Farley, D.; Ozair, S.; Courville, A.; and Bengio, Y.
2014. Generative adversarial nets. In NeurIPS, 2672–2680.

Goodfellow, I.; Shlens, J.; and Szegedy, C. 2014. Explaining
and harnessing adversarial examples. arXiv:1412.6572 .

Gorham, J.; and Mackey, L. 2015. Measuring sample quality
with Stein’s method. In NeurIPS, 226–234.

Guo, C.; Pleiss, G.; Sun, Y.; and Weinberger, K. Q. 2017.
On calibration of modern neural networks. In ICML.

Hastings, W. K. 1970. Monte Carlo sampling methods using
Markov chains and their applications. In Bibliometrika, 97–
109. Oxford University Press.

Heusel, M.; Ramsauer, H.; Unterthiner, T.; Nessler, B.; and
Hochreiter, S. 2017. Gans trained by a two time-scale update
rule converge to a local nash equilibrium. In NeurIPS, 6626–
6637.

Hoffman, M. D.; and Gelman, A. 2014. The No-U-Turn
sampler: adaptively setting path lengths in Hamiltonian
Monte Carlo. JMLR 15(1): 1593–1623.

Johnson, J.; Hariharan, B.; van der Maaten, L.; Fei-Fei, L.;
Zitnick, C. L.; and Girshick, R. 2017. CLEVR: A Diagnostic
Dataset for Compositional Language and Elementary Visual
Reasoning. In CVPR.

Kenny, E. M.; and Keane, M. T. 2020. On generating plau-
sible counterfactual and semi-factual explanations for deep
learning. arXiv preprint arXiv:2009.06399 .

Kim, J.; Ricci, M.; and Serre, T. 2018. Not-So-CLEVR:
learning same–different relations strains feedforward neural
networks. Interface focus 8(4): 20180011.

Kindermans, P.-J.; Hooker, S.; Adebayo, J.; Alber, M.;
Schütt, K. T.; Dähne, S.; Erhan, D.; and Kim, B. 2019. The
(un) reliability of saliency methods. In Explainable AI: In-
terpreting, Explaining and Visualizing Deep Learning, 267–
280. Springer.

Kingma, D. P.; and Welling, M. 2013. Auto-encoding varia-
tional bayes. arXiv:1312.6114 .

Koh, P. W.; and Liang, P. 2017. Understanding black-box
predictions via influence functions. In ICML.

Langer, E. J.; Blank, A.; and Chanowitz, B. 1978. The mind-
lessness of ostensibly thoughtful action: The role of ”place-
bic” information in interpersonal interaction. Journal of per-
sonality and social psychology 36(6): 635.

LeCun, Y.; and Cortes, C. 2010. MNIST handwrit-
ten digit database. Accessed 2021-03-08. URL http://yann.
lecun.com/exdb/mnist/.

Lee, J. D.; and See, K. A. 2004. Trust in automation: Design-
ing for appropriate reliance. Human factors 46(1): 50–80.

Lee, K.; Lee, H.; Lee, K.; and Shin, J. 2018. Train-
ing Confidence-calibrated Classifiers for Detecting Out-
of-Distribution Samples. In International Conference on
Learning Representations.

Li, O.; Liu, H.; Chen, C.; and Rudin, C. 2018. Deep learning
for case-based reasoning through prototypes: A neural net-
work that explains its predictions. In Thirty-Second AAAI
Conference on Artificial Intelligence.

Lipton, Z. C. 2018. The mythos of model interpretability.
Queue 16(3): 31–57.

Lundberg, S. M.; and Lee, S.-I. 2017. A unified approach to
interpreting model predictions. In NeurIPS, 4765–4774.

Maaten, L. v. d.; and Hinton, G. 2008. Visualizing data using
t-SNE. JMLR 9(Nov): 2579–2605.

Neal, R. M.; et al. 2011. MCMC using Hamiltonian dynam-
ics. Handbook of Markov Chain Monte Carlo 2(11): 2.

Netzer, Y.; Wang, T.; Coates, A.; Bissacco, A.; Wu, B.; and
Ng, A. Y. 2011. Reading digits in natural images with un-
supervised feature learning. In NIPS Workshop on Deep
Learning and Unsupervised Feature Learning.

Nguyen, A.; Yosinski, J.; and Clune, J. 2015. Deep neural
networks are easily fooled: High confidence predictions for
unrecognizable images. In CVPR, 427–436.

Nguyen, A.; Yosinski, J.; and Clune, J. 2019. Understanding
neural networks via feature visualization: A survey. In Ex-
plainable AI: Interpreting, Explaining and Visualizing Deep
Learning. Springer.

Odena, A.; Olsson, C.; Andersen, D.; and Goodfellow,
I. 2019. TensorFuzz: Debugging Neural Networks with
Coverage-Guided Fuzzing. In ICML, 4901–4911. Long
Beach, California, USA.

Olah, C.; Mordvintsev, A.; and Schubert, L. 2017. Fea-
ture Visualization. Distill doi:10.23915/distill.00007.
Https://distill.pub/2017/feature-visualization.
Pruthi, D.; Dhingra, B.; Soares, L. B.; Collins, M.; Lipton,
Z. C.; Neubig, G.; and Cohen, W. W. 2020. Evaluating Ex-
planations: How much do explanations from the teacher aid
students? arXiv preprint arXiv:2012.00893 .
Ribeiro, M. T.; Singh, S.; and Guestrin, C. 2016. ”Why
should I trust you?” Explaining the predictions of any clas-
sifier. In KDD, 1135–1144.
Rudin, C. 2019. Stop explaining black box machine learning
models for high stakes decisions and use interpretable mod-
els instead. Nature Machine Intelligence 1(5): 206–215.
Simonyan, K.; Vedaldi, A.; and Zisserman, A. 2013. Deep
Inside Convolutional Networks: Visualising Image Classifi-
cation Models and Saliency Maps. CoRR abs/1312.6034.
Slack, D.; Hilgard, S.; Jia, E.; Singh, S.; and Lakkaraju, H.
2020. How can we fool LIME and SHAP? Adversarial At-
tacks on Post hoc Explanation Methods. AAAI Conference
on Artificial Intelligence, Ethics, and Society (AIES) .
Smilkov, D.; Thorat, N.; Kim, B.; Viégas, F.; and Watten-
berg, M. 2017. Smoothgrad: removing noise by adding
noise. arXiv:1706.03825 .
Szegedy, C.; Zaremba, W.; Sutskever, I.; Bruna, J.; Erhan,
D.; Goodfellow, I.; and Fergus, R. 2014. Intriguing proper-
ties of neural networks. In ICLR.
Thulasidasan, S.; Chennupati, G.; Bilmes, J. A.; Bhat-
tacharya, T.; and Michalak, S. 2019. On mixup training: Im-
proved calibration and predictive uncertainty for deep neural
networks. In NeurIPS, 13888–13899.
Tokozume, Y.; Ushiku, Y.; and Harada, T. 2018. Between-
class learning for image classification. In Proceedings of the
IEEE Conference on Computer Vision and Pattern Recogni-
tion, 5486–5494.
Tzeng, E.; Hoffman, J.; Saenko, K.; and Darrell, T. 2017.
Adversarial discriminative domain adaptation. In CVPR.
Xiao, H.; Rasul, K.; and Vollgraf, R. 2017. Fashion-mnist:
a novel image dataset for benchmarking machine learning
algorithms. arXiv:1708.07747 .
Zeiler, M. D.; and Fergus, R. 2014. Visualizing and under-
standing convolutional networks. In European conference
on computer vision, 818–833. Springer.
Zhao, Z.; Dua, D.; and Singh, S. 2018. Generating Natural
Adversarial Examples. In ICLR.

BAYES-TREX – Appendix

A Network Architecture for MNIST & Fashion-MNIST

B Fréchet Inception Distance (FID) for VAE and GAN

C High-Confidence Examples

D Ambiguous Confidence Examples

E Ambiguous Confidence with GAN and Modified Classifier

F High-Confidence Failure Analysis

G Novel Class Extrapolation Analysis

H Domain Adaptation Analysis

I Quantitative Prediction Confidence Summary

J Test Set Evaluation

K BAYES-TREX with Saliency Maps

A Network Architecture for MNIST & Fashion-MNIST
For all experiments on MNIST and Fashion-MNIST, the VAE architecture is shown in Table 6 (left), and the GAN architecture
is shown in Table 6 (right). For all experiments on MNIST and Fashion-MNIST except for the domain adaptation analysis, the
classifier architecture is shown in Table 7 (left). The classifier used in the domain adaptation analysis is the LeNet architecture,
following the original source code released by the authors, shown in Table 7 (right). VAEs and GANs are trained with binary
cross entropy loss. Classifiers are trained with negative log likelihood loss.

Table 6: Left: VAE architecture; right: GAN architecture.

Encoder input: 28× 28× 1

Flatten

Fully-connected 784× 400

ReLU

Mean: Fully-connected 400× 5

Log-variance: Fully-connected 400× 5

Decoder input: 5 (latent dimension)

Fully-connected 5× 400

ReLU

Fully-connected 400× 784

Reshape 28× 28× 1

Sigmoid

Input: 5 (latent dimension)

Reshape 1× 1× 5

Conv-transpose: 512 filters, size=4× 4, stride = 1

Batch-norm, ReLU

Conv-transpose: 256 filters, size=4× 4, stride = 2

Batch-norm, ReLU

Conv-transpose: 128 filters, size=4× 4, stride = 2

Batch-norm, ReLU

Conv-transpose: 64 filters, size=4× 4, stride = 2

Batch-norm, ReLU

Conv-transpose: 1 filters, size=1× 1, stride = 1

Sigmoid

Table 7: Left: classifier architecture in all experiments except domain adaptation analysis; right: LeNet classifier architecture in
domain adaptation analysis (used in code released by ADDA authors).

Input: 28× 28× 1

Conv: 32 filters, size = 3× 3, stride = 1

ReLU

Conv: 64 filters, size = 3× 3, stride = 1

Drop-out, prob = 0.25

Max-pool, size = 2× 2

Flatten

Fully-connected 9216× 128

ReLU

Drop-out, prob = 0.5

Fully-connected 128× 10

Soft-max

Input: 28× 28× 1

Conv: 20 filters, size = 5× 5, stride = 1

ReLU

Max-pool, size = 2× 2

Conv: 50 filters, size = 5× 5, stride = 1

ReLU

Max-pool, size = 2× 2

Flatten

Fully-connected 800× 500

ReLU

Fully-connected 500× 10

Soft-max

B Fréchet Inception Distance (FID) for VAE and GAN
Table 8 extends Table 1 in Sec. 4.2 and lists the FID scores for all VAE and GAN models that we use. These FID scores
reveal the GANs are better approximations of the underlying data distributions. Models trained on “all” data are used for high
confidence, ambiguous confidence, confidence interpolation and domain adaptation settings. Models trained on data “without
[class]” are used for high-confidence failure settings. Models trained on select classes ({2, 4, 5, 7, 8} and {0, 1, 4, 7, 8}) are
used for the novel class extrapolation settings.

Table 8: Fréchet Inception Distance (FID) scores for all learned data distributions; a lower score indicates a better distribution
fit. Results are computed across 1000 samples. Classes 0 to 9 for Fashion-MNIST correspond to 0: T-shirt, 1: Trouser, 2:
Pullover, 3: Dress, 4: Coat, 5: Sandal, 6: Shirt, 7: Sneaker, 8: Bag, and 9: Ankle boot.

Model Dataset Data Source FID

GAN

MNIST

All 11.83
Without 0 12.10
Without 1 12.08
Without 2 13.57
Without 3 12.71
Without 4 12.25
Without 5 12.21
Without 6 11.86
Without 7 11.64
Without 8 12.31
Without 9 12.34
{2, 4, 5, 7, 8} 13.45

Fashion

All 29.44
Without 0 28.91
Without 1 31.18
Without 2 30.11
Without 3 28.95
Without 4 30.43
Without 5 27.67
Without 6 29.68
Without 7 28.56
Without 8 30.87
Without 9 29.22
{0, 1, 4, 7, 8} 33.11

Model Dataset Data Source FID

VAE

MNIST

All 72.33
Without 0 71.28
Without 1 75.36
Without 2 64.77
Without 3 63.66
Without 4 66.96
Without 5 63.31
Without 6 67.64
Without 7 62.45
Without 8 64.14
Without 9 66.57
—– —–

Fashion

All 87.89
Without 0 89.21
Without 1 92.02
Without 2 91.20
Without 3 85.51
Without 4 88.38
Without 5 84.17
Without 6 85.58
Without 7 84.93
Without 8 83.66
Without 9 81.48
— —

C High-Confidence Examples
Figure 13 presents additional high-confidence CLEVR examples and the classifier’s predictions.

(a) P5 Sph. = 94.8% (b) P5 Sph. = 94.5% (c) P5 Sph. = 94.6% (d) P5 Sph. = 95.2% (e) P5 Sph. = 92.0%

(f) P2 Blue = 96.3% (g) P2 Blue = 96.1% (h) P2 Blue = 94.9% (i) P2 Blue = 96.8% (j) P2 Blue = 97.8%

Figure 13: Above, 13(a)–13(e): selected examples classified as containing 5 spheres with high confidence. Below, 13(f)–13(j):
selected examples classified as containing 2 blue spheres with high confidence.

Figure 14 presents additional high-confidence examples for MNIST and Fashion-MNIST.

(a) MNIST (b) Fashion-MNIST

Figure 14: High-confidence examples from MNIST and Fashion-MNIST. There are no misclassifications. MNIST columns
represent digit 0 to 9, respectively. Fashion-MNIST columns represent T-shirt, trousers, pullover, dress, coat, sandal, shirt,
sneaker, bag, and ankle boot, respectively.

D Ambiguous Confidence Examples
Figure 15 presents additional visualizations for two pairs, Digit 1 vs. Digit 7 from MNIST and T-shirt vs. Pullover from Fashion-
MNIST. The confidence plots in the middle confirm that the neural network is indeed making the ambiguous predictions.
The t-SNE (Maaten and Hinton 2008) latent space visualizations at the bottom indicate that the samples lie around the class
boundaries and are also in-distribution (i.e., having close proximity to those sampled from the prior).

Figure 15: Left: ambiguous samples for digit 1 vs. 7 in MNIST. Right: ambiguous samples for pullover vs. shirt in Fashion-
MNIST. Top: 30 sampled images. Middle: classifier confidence plots on the samples. Bottom: t-SNE latent space visualization:
green dots represent ambiguous samples from the posterior, red and blue dots represents samples from the prior that are pre-
dicted by the classifier to be either class of interest, and gray dots represents other samples from the prior. The ambiguous
samples are on the class boundaries.

In addition, we also sampled for uniformly ambiguous examples (i.e. images that receive around 10% confidence for each
class) using the following formulation:

u|x ∼ No(max
i
f(x)i −min

j
f(x)j , σ

2), (15)

u∗ = 0. (16)

Fig. 16 shows these samples and their confidence plot.

Figure 16: Uniformly ambiguous images and the confidence plot.

E Ambiguous Confidence with GAN and Modified Classifier
Fig. 17 shows the ambiguous confidence samples for 0v1, 1v2, ..., 9v0 using the GAN-learned distribution when the classifier
is trained with the custom KL loss described in Eq. 13.

Figure 17: Sampling results with an explicitly ambivalent classifier and a GAN-learned distribution. Top 2 rows: digit i vs. i+1
for i ∈ {0, 1, 2, 3, 4}. Bottom 2 rows: digit i vs. i+ 1 (mod 10) for i ∈ {5, 6, 7, 8, 9}.

F High-Confidence Failure Analysis
Fig. 18 shows such examples for CLEVR. For each target inference (e.g. “1 Cube”), we exclude objects belonging to the target
class from the data distribution.

(a) p1 Cube = 96.0% (b) p1 Cube = 97.2% (c) p1 Cube = 93.5% (d) p1 Cube = 67.3% (e) p1 Cube = 94.5%

(f) p1 Sphere = 95.6% (g) p1 Sphere = 96.6% (h) p1 Sphere = 89.8% (i) p1 Sphere = 99.1% (j) p1 Sphere = 96.5%

(k) p1 Cyl. = 90.4% (l) p1 Cyl. = 98.6% (m) p1 Cyl. = 94.5% (n) p1 Cyl. = 96.5% (o) p1 Cyl. = 98.5%

(p) p2 Cyl. = 85.9% (q) p2 Cyl. = 60.2% (r) p2 Cyl. = 79.4% (s) p2 Cyl. = 48.4% (t) p2 Cyl. = 60.5%

Figure 18: Sampled high confidence misclassified examples and their associated prediction confidences. For each target con-
straint (e.g., “1 Cube”), objects from the target class (e.g., cubes) are excluded from the data distribution. The resultant images
are composed entirely of non-target-class objects, (e.g., cylinders and spheres).

Fig. 19 presents high-confidence misclassifications for each classes of MNIST, with digit 0-4 on the top two rows and digit
5-9 on the bottom two rows.

Figure 19: Examples and violin plots for high confidence misclassified examples. Top two rows: 0-4; bottom two rows: 5-9.

Fig. 20 presents high-confidence misclassifications for each classes of Fashion-MNIST, with T-shirt, trousers pullover, dress
and coat on the top two rows and sandal, shirt, sneaker, bag and ankle boot on the bottom two rows. The confidence plot for the
trousers samples indicates that the sampling is not successful.

Figure 20: Samples and violin plots for high confidence misclassified examples. Top row: T-shirt, trousers (sample failure),
pullover, dress, coat. Bottom row: sandal, shirt, sneaker, bag, ankle boot.

G Novel Class Extrapolation Analysis
Figure 21 shows novel class extrapolation examples for CLEVR.

(a) p1 Sph. = 99.3% (b) p1 Sph. = 95.9% (c) p1 Sph. = 99.3% (d) p1 Sph. = 97.7% (e) p1 Sph. = 97.3%

(f) p1 Cube = 99.2% (g) p1 Cube = 97.5% (h) p1 Cube = 98.7% (i) p1 Cube = 99.0% (j) p1 Cube = 98.7%

(k) p1 Cyl. = 96.9% (l) p1 Cyl. = 99.1% (m) p1 Cyl. = 96.5% (n) p1 Cyl. = 97.2% (o) p1 Cyl. = 99.0%

(p) p5 Cubes = 74.6% (q) p5 Cubes = 89.5% (r) p5 Cubes = 93.3% (s) p5 Cubes = 91.6% (t) p5 Cubes = 89.9%

Figure 21: Sampled novel class extrapolation examples and their associated prediction confidences. Similar to high confidence
misclassified examples, for each target constraint (e.g., “1 Cube”), we remove examples of the target class (e.g., cubes) from the
data distribution, but add to the cone object to it, a novel class not present in the training distribution. 21(n) is the only example
which by chance does not include a novel class object.

Fig. 22 shows examples for novel-class extrapolation on MNIST. The classifier is trained on digit 0, 1, 3, 6 and 9, and tested
on images generated by a GAN trained on digit 2, 4, 5, 7 and 8.

Figure 22: Samples and confidence plots for MNIST novel class extrapolation for digits 0, 1, 3, 6 and 9, in that order.

Fig. 23 shows examples for novel-class extrapolation on Fashion-MNIST. The classifier is trained on pullover, dress, sandal,
shirt and ankle boot, and tested on images generated by a GAN trained on T-shirt, trousers, coat, sneaker and bag.

Figure 23: Samples and confidence plots for Fashion-MNIST novel class extrapolation for pullover, dress, sandal, shirt and
ankle boot, in that order.

H Domain Adaptation Analysis
Fig. 24 and 25 show additional samples and confidence plots for the baseline and ADDA model, respectively. Top two rows are
for digit 0-4, and bottom two rows are for digit 5-9.

Figure 24: High confident MNIST samples generated for each class as predicted by the baseline model.

Figure 25: High confident MNIST samples generated for each class as predicted by the ADDA model.

I Quantitative Prediction Confidence Summary
Tables 9, 10, and 11 present the extension of Table 2 in Sec. 4.9. These results show that the inferred samples have predicted
confidence closely matching the specified confidence targets. This indicates the MCMC methods used by BAYES-TREX are
successful for the tested domains and scenarios. Queries for 5 Cubes in the novel class extrapolation CLEVR experiments use
a stopping criterion of 1500 samples instead of the standard 500 (Fig. 26). Averages reported across 10 inference runs. Fig. 27
presents the prediction confidence for pairwise ambiguous samples for MNIST and Fashion-MNIST.

Table 9: Prediction confidence for samples on high-confidence examples (left) and high confidence misclassifications (right).

Target Prediction Confidence

p0 = 1 0.999 ± 0.006
p1 = 1 0.999 ± 0.003
p2 = 1 0.999 ± 0.006
p3 = 1 0.999 ± 0.005
p4 = 1 0.998 ± 0.008
p5 = 1 0.999 ± 0.006
p6 = 1 0.998 ± 0.007
p7 = 1 0.998 ± 0.007
p8 = 1 0.999 ± 0.004
p9 = 1 0.998 ± 0.007

pT-Shirt = 1 0.991 ± 0.016
pTrouser = 1 0.999 ± 0.006
pPullover = 1 0.984 ± 0.019
pDress = 1 0.993 ± 0.008
pCoat = 1 0.983 ± 0.021
pSandal = 1 0.998 ± 0.008
pShirt = 1 0.987 ± 0.020
pSneaker = 1 0.994 ± 0.016
pBag = 1 0.999 ± 0.006
pAnkle Boot = 1 0.996 ± 0.012

p5 Spheres = 1 0.943 ± 0.020
p2 Blue Spheres = 1 0.892 ± 0.245

Target Prediction Confidence

p0 = 1 0.981 ± 0.027
p1 = 1 0.953 ± 0.028
p2 = 1 0.968 ± 0.028
p3 = 1 0.969 ± 0.027
p4 = 1 0.955 ± 0.030
p5 = 1 0.990 ± 0.018
p6 = 1 0.970 ± 0.026
p7 = 1 0.968 ± 0.029
p8 = 1 0.982 ± 0.024
p9 = 1 0.983 ± 0.022

pT-Shirt = 1 0.964 ± 0.029
pTrouser = 1 (sample failure)
pPullover = 1 0.886 ± 0.027
pDress = 1 0.970 ± 0.026
pCoat = 1 0.938 ± 0.030
pSandal = 1 0.968 ± 0.030
pShirt = 1 0.938 ± 0.032
pSneaker = 1 0.969 ± 0.028
pBag = 1 0.967 ± 0.026
pAnkle Boot = 1 0.971 ± 0.027

p1 Cube = 1 0.929 ± 0.062
p1 Cylinder = 1 0.972 ± 0.021
p1 Sphere = 1 0.843 ± 0.266
p2 Cylinders = 1 0.545 ± 0.230

Table 10: (Fashion-)MNIST confidence interpolation.

Target Prediction Confidence

p8 = 0.0,p9 = 1.0 (0.002± 0.006, 0.990± 0.016)
p8 = 0.1,p9 = 0.9 (0.030± 0.039, 0.936± 0.051)
p8 = 0.2,p9 = 0.8 (0.170± 0.039, 0.788± 0.040)
p8 = 0.3,p9 = 0.7 (0.275± 0.041, 0.682± 0.040)
p8 = 0.4,p9 = 0.6 (0.378± 0.040, 0.578± 0.040)
p8 = 0.5,p9 = 0.5 (0.477± 0.039, 0.477± 0.039)
p8 = 0.6,p9 = 0.4 (0.581± 0.038, 0.374± 0.039)
p8 = 0.7,p9 = 0.3 (0.680± 0.041, 0.275± 0.039)
p8 = 0.8,p9 = 0.2 (0.788± 0.040, 0.167± 0.041)
p8 = 0.9,p9 = 0.1 (0.926± 0.050, 0.039± 0.040)
p8 = 1.0,p9 = 0.0 (0.989± 0.016, 0.002± 0.007)

Target Prediction Confidence

pT-Shirt = 0.0,pTrousers = 1.0 (0.001± 0.004, 0.995± 0.012)
pT-Shirt = 0.1,pTrousers = 0.9 (0.026± 0.035, 0.950± 0.050)
pT-Shirt = 0.2,pTrousers = 0.8 (0.166± 0.040, 0.791± 0.041)
pT-Shirt = 0.3,pTrousers = 0.7 (0.275± 0.037, 0.686± 0.038)
pT-Shirt = 0.4,pTrousers = 0.6 (0.379± 0.038, 0.586± 0.038)
pT-Shirt = 0.5,pTrousers = 0.5 (0.436± 0.040, 0.459± 0.040)
pT-Shirt = 0.6,pTrousers = 0.4 (0.583± 0.038, 0.382± 0.037)
pT-Shirt = 0.7,pTrousers = 0.3 (0.685± 0.039, 0.281± 0.040)
pT-Shirt = 0.8,pTrousers = 0.2 (0.790± 0.037, 0.177± 0.037)
pT-Shirt = 0.9,pTrousers = 0.1 (0.936± 0.045, 0.029± 0.041)
pT-Shirt = 1.0,pTrousers = 0.0 (0.985± 0.019, 0.000± 0.003)

Table 11: Prediction confidence for novel class extrapolation (left) and domain adaptation (right).

Target Prediction Confidence

p0 = 1 0.976 ± 0.025
p1 = 1 0.988 ± 0.186
p3 = 1 0.987 ± 0.020
p6 = 1 0.989 ± 0.018
p9 = 1 0.995 ± 0.013

pPullover = 1 0.991 ± 0.016
pDress = 1 0.994 ± 0.013
pSandal = 1 0.995 ± 0.013
pShirt = 1 0.994 ± 0.012
pAnkle Boot = 1 0.993 ± 0.015

p1 Cube = 1 0.983 ± 0.014
p1 Cylinder = 1 0.959 ± 0.031
p1 Sphere = 1 0.969 ± 0.022
p5 Cubes = 1 0.921 ± 0.029

Target Prediction Confidence

p0 = 1 0.996 ± 0.011
p1 = 1 0.994 ± 0.014
p2 = 1 0.998 ± 0.008
p3 = 1 0.994 ± 0.015
p4 = 1 0.997 ± 0.010
p5 = 1 0.998 ± 0.007
p6 = 1 0.996 ± 0.011
p7 = 1 0.996 ± 0.011
p8 = 1 0.995 ± 0.013
p9 = 1 0.996 ± 0.012

250 500 750 1000 1250 1500 1750 2000
Number of Samples

0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

CLEVR, 5 Cubes Novel Class Experiment:
Sampling Efficacy

Figure 26: We assess sample efficacy which enables us to approximate the prediction target while minimizing compute uti-
lization. For this experiment, the target is a novel class extrapolation CLEVR scene classified as containing 5 cubes with high
confidence (p5 Cubes = 1), but which consists of only spheres, cylinders, and cones. For each evaluated number of samples, we
conduct 5 independent BAYES-TREX runs. This evaluation shows that 1250 or more samples are needed for this trial.

0 1 2 3 4 5 6 7 8 9

0

1

2

3

4

5

6

7

8

9

0.437 0.487 0.447 0.481 0.473 0.490 0.482 0.474

0.433 0.490 0.485 0.485 0.455 0.489 0.489 0.483 0.463

0.487 0.489 0.487 0.469 0.481 0.483 0.482 0.303

0.448 0.485 0.486 0.489 0.463 0.483 0.486

0.481 0.484 0.469 0.484 0.484 0.488

0.471 0.456 0.491 0.481 0.458 0.488 0.467

0.492 0.488 0.484 0.463 0.484 0.481 0.476 0.435

0.490 0.486 0.482 0.486 0.457 0.478 0.488

0.482 0.485 0.479 0.487 0.487 0.476 0.477 0.481

0.477 0.464 0.314 0.486 0.467 0.436 0.490 0.484

MNIST

T-shirt
Trousers

Pullover

Dress
Coat

Sandal

Shirt
Sneaker

Bag
Ankle boot

T-shirt
TrousersPulloverDress
Coat
SandalShirt
SneakerBag
Ankle boot

0.487 0.475 0.482 0.486 0.460 0.400

0.488 0.461 0.487 0.472 0.477 0.462 0.459

0.475 0.459 0.483 0.476 0.478 0.436

0.480 0.488 0.476 0.485 0.457

0.475 0.484 0.476 0.479 0.475

0.479 0.476 0.485 0.472 0.496

0.490 0.479 0.477 0.457

0.485 0.478 0.494

0.461 0.467 0.434 0.486 0.473 0.475 0.455 0.480 0.487

0.401 0.460 0.456 0.493 0.494 0.488

Fashion-MNIST

Figure 27: Prediction confidence for (Fashion-)MNIST ambiguous examples. For each class combination, the lower left triangle
shows the the confidence for the digit denoted on the horizontal axis, and the upper right triangle shows the confidence for the
digit on the vertical axis. For example, for the MNIST class combination 9v0, the classifier confidence in class 0 is 0.477
(bottom left) while the classifier confidence in class 9 is 0.474 (top right). Diagonal entries are blank since they have the same
class on row and column. Off-diagonal blank entries indicate that BAYES-TREX sampling failed for that class pair.

J Test Set Evaluation
Tab. 12 extends Tab. 5 in Sec. 4.10 and includes misclassified vs. mislabeled images of all (Fashion-)MNIST classes.

Table 12: An alternative to using BAYES-TREX for finding highly confident classification failures is to evaluate the high
confidence example confusion matrix and associated images from the test set. Here, we show all ‘misclassified’ examples
where the classifier failed to predict the given label for the MNIST and Fashion-MNIST datasets. For MNIST, we observe that
the majority (60/84) of these images are mislabeled: for example, all of the labeled 2s clearly belong to other classes (8, 7, 7,
3, 1, 7, 7, 7, respectively). While MNIST had 84 total misclassifications, Fashion-MNIST had 802 total misclassifications. We
randomly select 10 misclassifications from each class for analysis (with the exception of the “trousers” class, as there were 3
total misclassifications for this label). While Fashion-MNIST is more balanced, we again observe a majority of examples to be
mislabeled ground truth (52/93) instead of misclassifications.

Class Misclassified Mislabeled

0

1

2 ∅

3

4

5

6

7

8 ∅

9

Tshirt

Trouser ∅

Pullover

Dress

Coat

Sandal

Shirt

Sneaker

Bag

Boot ∅

Figure 28 shows the confusion matrix of the MNIST (left) and Fashion-MNIST (right) classifiers.

0 1 2 3 4 5 6 7 8 9

Predicted Label

0

1

2

3

4

5

6

7

8

9

Tr
ue

 L
ab

el

973 0 1 0 0 1 4 1 0 0

0 1133 1 0 0 0 1 0 0 0

1 3 1022 0 1 0 0 4 1 0

0 0 1 1001 0 2 0 4 2 0

0 0 0 0 978 0 3 0 0 1

1 0 0 5 0 885 1 0 0 0

4 3 0 0 3 3 945 0 0 0

0 3 6 1 0 0 0 1016 0 2

2 0 4 2 2 1 2 4 954 3

0 3 0 5 11 6 1 8 3 972

MNIST

T-shirt
Trousers

Pullover

Dress
Coat

Sandal

Shirt
Sneaker

Bag
Ankle bootPredicted Label

T-shirt
TrousersPulloverDress
Coat
SandalShirt
SneakerBag
Ankle boot

Tr
ue

 L
ab

el

850 0 4 26 1 7 97 0 15 0

5 943 0 42 1 2 5 0 2 0

34 1 723 12 101 8 112 0 9 0

26 0 1 907 11 2 39 0 14 0

6 1 45 73 758 10 94 0 13 0

0 0 0 0 0 986 0 5 5 4

141 1 34 23 48 13 713 0 27 0

0 0 0 0 0 37 0 905 6 52

1 1 0 2 1 3 7 2 983 0

0 0 0 0 0 15 0 16 0 969

Fashion-MNIST

Figure 28: Confusion matrices for MNIST (left) and Fashion-MNIST (right) classifiers. Note that these matrices include all test
set examples, not just those which evoke high confidence responses from the classifier.

K BAYES-TREX with Saliency Maps
We demonstrate a simple use case of combining with BAYES-TREX samples with downstream interpretability methods. Fig. 29
(left) shows an image for which the classifier mistakes it to contain one cube with 93.5% accuracy. Fig. 29 (middle) presents
its SmoothGrad (Smilkov et al. 2017) saliency map and Fig. 29 (right) overlays it on top of the image. We can see that the
most salient part contributing to the 1-cube decision is the front red cylinder. Indeed, as we confirm in Fig. 30, among all single
object removals, removing this object has the biggest effect to the classifier confidence, decreasing it to 29.0%.

Figure 29: Left: the original image, preprocessed for classification by resizing and normalizing. The classifier is 93.5% confident
this scene contains 1 cube, when in fact it is composed of 3 cylinders and 2 spheres. Middle: the SmoothGrad saliency map for
this input. Right: the saliency map overlaid upon the original image. This saliency map most strongly highlights the red metal
cylinder, indicating that this cylinder is likely the cause of the misclassification.

(a) p1 Cube = 29.0% (b) p1 Cube = 68.5% (c) p1 Cube = 81.2% (d) p1 Cube = 99.0% (e) p1 Cube = 99.4%

Figure 30: Prediction confidence for 1-cube after every single object is removed in turn. As suggested by the saliency map, the
removal of the red metal cylinder most prominently reduces the classification confidence, from 93.5% to 29.0%.

Fig. 31 presents additional case studies with the same setup. Note that Fig. 31(e) shows a failure of SmoothGrad.

(a) Original image: p1 Cube = 85.5%. Purple cylinder removed: p1 Cube = 1.9%

(b) Original image: p1 Sphere = 97.9%. Yellow cylinder removed: p1 Sphere = 5.2%

(c) Original image: p1 Cylinder = 85.4%. Red sphere removed: p1 Cylinder = 0.9%

(d) Original image: p1 Cube = 99.7%. Cone removed: p1 Cube = 0.4%

(e) Original image: p1 Sphere = 98.0%. Gray cone removed: p1 Sphere = 0.3%

Figure 31: Images sampled with BAYES-TREX and their saliency maps. 31(a)-31(c) are high confidence misclassified examples;
31(d)-31(e) are novel class extrapolation examples. In 31(e), the saliency map primarily highlights two objects: the red cone
and the blue cylinder. Removing either of these objects does not result in a change of prediction. Instead, the misclassification
of 1 Sphere is due to the marginally-highlighted gray cone.

