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ABSTRACT
Practitioners from diverse occupations and backgrounds are increas-
ingly using machine learning (ML) methods. Nonetheless, studies
on ML Practitioners typically draw populations from Big Tech and
academia, as researchers have easier access to these communities.
Through this selection bias, past research often excludes the broader,
lesser-resourced ML community—for example, practitioners work-
ing at startups, at non-tech companies, and in the public sector.
These practitioners share many of the same ML development dif-
ficulties and ethical conundrums as their Big Tech counterparts;
however, their experiences are subject to additional under-studied
challenges stemming from deploying ML with limited resources,
increased existential risk, and absent access to in-house research
teams. We contribute a qualitative analysis of 17 interviews with
stakeholders from organizations which are less represented in prior
studies. We uncover a number of tensions which are introduced or
exacerbated by these organizations’ resource constraints—tensions
between privacy and ubiquity, resource management and perfor-
mance optimization, and access and monopolization. We argue that
increased academic focus on these lesser-resourced practitioners
can facilitate a more holistic understanding of ML limitations, and
so is useful for prescribing a research agenda to facilitate responsi-
ble ML development for all practitioners.
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1 INTRODUCTION
ML practitioners are increasingly composed of people from diverse
occupations and backgrounds. Yet, in past research analyzing ML
practice, the vast majority of studies draw participants from Big
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Tech companies or academia [1, 5, 22, 24, 28, 29, 29, 30, 36, 37, 41,
45, 58, 60], with few exceptions [9, 25, 42]. However, wealthy Big
Tech and academic communities offer privileges and perspectives
that are not universally representative. For example, Simonite [50]
chronicled how a Google and Carnegie Mellon University project
collected 300 million labels and used fifty GPUs for two months—a
scale of development which is increasingly the norm, yet is unten-
able for less resourced or experienced organizations. This leads to
the question: how well do past studies of Big Tech and academic
practitioners encompass the needs of other data and ML workers?

Pereira et al. [42] observed that the diversity of data science
teams’ composition, goals, and processes remains understudied—
particularly for practitioners outside of Big Tech. We note this is
certainly not the only understudied component of data and ML
work outside of Big Tech and academia, and ask: what are the
problems smaller companies, organizations, and agencies face?
What are their practices? How can we, the AI research community,
ensure that the work we do is targeted not just to benefit well-
resourced organizations but also those with limited fiscal resources
and increased existential risk, where any given decision may carry
the added risk of not making payroll [51]? These questions are
particularly consequential to future work encouraging ethical and
fair practices [12], as these organizations often find applying current
best practices in responsible AI development to be too costly.

We conducted 17 interviews with practitioners working outside
of Big Tech and academia, asking questions about current practices,
fairness, and risk mitigation in ML development. We analyzed these
semi-structured interviews using thematic analysis, uncovering six
themes and numerous insights about these practitioners’ beliefs
and behaviors. We explore tensions between privacy and ubiquity,
resource management and performance optimization, and access
and monopolization. We focus on the impacts (or lack thereof)
of GDPR and privacy legislation, the limited usefulness of model
explanations, the trend of deferring responsibility to downstream
users and domain experts, and Big Tech’s monopolization of access.
These tensions reflect organizations’ underlying and competing
concerns of growth and cost, with frequent and complex trade-offs.

While our findings often overlap with those of past practitioner
studies, we find that resource constraints introduce additional chal-
lenges to developing and testing fair and robust ML models. Fur-
ther, even those difficulties of responsible development which are
universally shared are further exacerbated by an organization’s
resource constraints—a particularly concerning trend considering
ML’s growing ubiquity and the rapidly developing support for its
democratization. Finally, we discuss how the research community
can direct future efforts to assist in managing these trade-offs.
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2 RELATEDWORK
Efforts to understand ML practitioners’ challenges are commonly
assessed through contextual inquiry, surveys, and interviews.While
this paper explores the holistic experience of developing, deploying,
and monitoring ML systems, past efforts have typically focused on
one of explainable AI, responsible AI, or end user requirements.

2.0.1 Interpretability. Much of the literature on ML practice fo-
cuses on interpretability. Kaur et al. [28] conducted a contextual in-
quiry to explore data scientist use of interpretability tools. Drawing
their population from a “large technology company” (presumably
Microsoft), they found data scientists over-trusted and misused in-
terpretability tools, and could not generally explain interpretability
visualizations. Brennen [9] conducted interviews with ML prac-
titioners working in a wider variety of contexts. Through their
interviews, they observed practitioners in academia and research
labs want explanations to provide insight into model mechanics,
while other practitioners want explanations that use model outputs
“more effectively and more responsibly”—an understudied use case
for explanations. Our study of practitioners at startups, non-tech,
and public service organizations reinforced this need. Hong et al.
[25] interviewedML practitioners who use interpretability methods
and found that a core use case for explanations is in building trust
both between people and models, and between people within an
organization. While our interviews exposed these same desires, few
organizations had invested in building interpretability tools, and
those that had found only limited success incorporating them.

2.0.2 Responsible AI. Responsible AI—particularly focusing on
bias and fairness—is another area of ML which has received ex-
tensive research attention and contextual inquiry. Holstein et al.
[24] conducted semi-structured interviews and surveys with ML
practitioners at “10 major companies” to gain insight into existing
practices and challenges in ML fairness. Holstein et al. [24] uncov-
ered that—while the ML fairness research community is largely
focused on de-biasing models—these stakeholders instead focus on
the problems of data collection and data diversity. We found this
approach of focusing on data diversity to be similarly common with
practitioners from smaller or less visible organizations.

Rakova et al. [45] introduced a framework for analyzing how
company culture and structure impact the viability of responsible
AI development. They noted a lack of clarity in how the multi-
tude of proposed frameworks and metrics for responsible AI are
translated into practice. When companies introduced such frame-
works, practitioners were concerned by the risks of inappropriate
or misleading metrics. Further, they found practitioners at Big Tech
companies commonly contend with deficient accountability and
decision-making structures that only react to external pressures.
We found these experiences and structures to be less applicable for
smaller and less visible organizations, where individual contributors
generally have more decision-making power, but fewer resources
and less developed processes for assessing bias and fairness.

2.0.3 User Requirements and Expectations. Another common form
of contextual inquiry for ML evaluates how stakeholders will in-
teract with ML systems. To this end, Cai et al. [10] interviewed
pathologists before, during, and after presenting neural network

predictions of prostate cancer, with a focus on their needs for on-
boarding this technology. They discovered that these stakeholders
wanted more insight into the expected model performance: they
wanted insight into the model’s strengths and weaknesses, as well
as the design objective. Relatedly, Amershi et al. [1] proposed 18
design guidelines for human-AI interaction, and validated these
guidelineswith design practitioners recruited from a “large software
company” (presumably Microsoft). While these design insights are
useful for all practitioners, this line of contextual inquiry focuses
only on the end human-AI interaction portion of ML development.

2.0.4 Characterizing Practitioner Needs. ML practitioners span di-
verse fields, industries, and roles. Data scientists are a unique ex-
ample. This field has been studied separately from ML due to its
emphasis on business-adjacent analytics [41], but data scientists
are increasingly adopting ML methods. Researchers now study “Hu-
man Centered Data Science,” which encompasses interest in the
shared practices of data scientists and ML practitioners [2, 35, 37].
We adopt this broad view of who constitutes an ML practitioner,
and we do not differentiate data scientists who use ML methods.

Past research on both ML and data science practitioners catego-
rized various approaches and motivations [22, 36, 41] and assessed
stakeholders’ communication needs [41]. These past works high-
light two key challenges: the need for continuous refinement, and
a desire for clarity in communication and objectives. Data work
is inherently “messy” [41], and practitioners rarely have domain
expertise for any given application. Instead, Viaene [56] found that
practitioners learn as they collaborate with new domain stakehold-
ers and grow familiar with the data. The practitioners we inter-
viewed similarly collaborated with domain experts. By and large,
interviewees found this process challenging, with communication
greatly affected by stakeholders’ varied levels of data experience.

Passi and Jackson [41] highlighted how teams iteratively nego-
tiated and justified the worth of data science solutions; similarly,
Hohman et al. [22] described the data iteration processes involved
in ML development at Apple. In contrast to Passi and Jackson
[41], Hohman et al. [22] focused on functional iteration, updat-
ing datasets to improve models and reduce bias, and not iterating
on the communication needs of data science and ML teams. Our
interviews with practitioners at smaller or less visible organizations
exposed similar trends of constant iteration and reinforced the need
for communication as an irreplaceable mechanism for addressing
the “messiness” of data work and for building trust.

3 METHODS
We used a combination of targeted, convenience, and snowball
sampling to invite participants [16, 17]: we invited participants by
cold-emailing, leveraging our professional networks and the net-
works of participants. We chose interviewees to represent a variety
of contexts, from municipal analytics teams to small startups to
publicly traded non-tech corporations. We spoke to a combination
of CTOs, directors, investors, engineers, and analysts. All practi-
tioners used or directed the use of ML in their respective work. We
categorized interviewees based on available resources; this catego-
rization was inferred through interviews and supported by Public
Financial Planning and Budgeting Reports and Crunchbase. We
present an overview of these interview contexts in Table 1.



ID Type Company Description Interviewee Title Resources
R1 Publicly Listed Shopping/recommendations Data Engineer $$$$
R2 Startup Shopping/recommendations VP of Product $$
R3 Startup Shopping/recommendations VP of Strategy $$
R4 Publicly Listed Pet care (diagnostics) Senior Data Scientist $$$$
R5 Startup Healthcare (diagnostics) Chief Operating Officer $
R6 Startup Fitness Chief Technology Officer $$$
R7 Startup Real estate Chief Technology Officer $$
R8 Small Company Real estate Head Of Analytics $$
R9 Startup Real estate Senior Product Manager $$
R10 Startup ML consulting and tools Chief Technology Officer $$
R11 Startup ML consulting and tools Chief Executive Officer $
R12 Startup Data automation Board Member/Investor $
R13 Startup Pet care Director of Engineering $
R14 Public Sector Municipality Asst. Director of Data Analytics $
R15 Venture Capital Investment Startup/ML Investor -
R16 Startup Language learning Chief Technology Officer $
R17 Startup Language learning Chief Technology Officer $

Table 1: Overview of
interviews, including
the type of organization,
an overview of the com-
pany’s main product,
the interviewee’s title,
an interview ID, and an
estimate of the compa-
nies’ overall available
resources based on
public records and
Crunchbase financing
reports. One partici-
pant’s distinctive title
has been changed to a
functional equivalent
to preserve anonymity.
In general, $ companies
had less than 15 total
employees; $$$$ had
on the order of 100
engineers.

3.1 Interviewees
All interviewees did some form of advanced ML development,
though these efforts were often pursued for internal tools or as
unreleased, experimental products in development. Still, several
organizations had released products which used ML methods exten-
sively (R1, R4, R5, R10, R11, R13, R14, R17, R16). Every interviewee
we spoke with incorporated—at minimum—linear regression meth-
ods as a core part of their work, and many used significantly more
complex ML techniques. Despite this, we found these organizations
often expressed that “we don’t do ML,” even when ML was adver-
tised in the company’s description, marketing, and website. Several
companies rejected our requests for interviews on these grounds.

Across our interviews, R1 works at a company most similar to
Big Tech: they have extensive resources and advanced engineering
practices, and they use ML throughout their business. R2 and R3
work at an early stage shopping and recommendations company,
which is actively migrating to a learned recommendation engine.
R4 works at a publicly listed, well resourced company that has
substantial ML integrations despite not being tech-first. R5 works
at an early stage healthcare diagnostics company, and ML is core to
their business. R6 is a well-funded, late-stage fitness startup with
an experienced ML team, but they use ML in a limited capacity
to drive investment. R7, R8, and R9 work in real estate domains,
and all three are relatively early in their ML integrations. Of all
our interviews, R9 uses the least ML. R10 and R11 work at ML
consulting and tooling companies; both have strong expertise and
advanced practices. R12 works at a data management company.
R13 works at an early ML-focused startup with an emphasis on
computer vision. R14 works in a municipal analytics office; their
ML models are typically rapid prototypes. R15 supports and invests
in ML-focused startups. R16 and R17 work at early stage language
learning companies; both are actively developing core ML features.

3.2 Interview Process
We followed a semi-structured interview protocol.Whilewe adapted
our questions for each interviewee, we derived these questions from
a set of common themes. We sought to survey broader ML and data
processes within these organizations—along with the specific chal-
lenges these practitioners faced—by eliciting examples, descriptions
of existing processes, and anecdotes related to deploying models.
We provide the core interview protocols in the supplementary ma-
terials, but include samples of questions here:

• What is your process for launching a data-related project?
• How do you evaluate your models or data?
• How do you track projects over time?
• What do updates and changes look like?
• What setbacks have you experienced after launching?
• How do you think about representative data and/or testing?
• How do you think about bias?
• How has GDPR or other data legislation affected you?

Before starting each interview, we obtained permission to tran-
scribe the interview. We intentionally chose not to audio record for
interviewee comfort, instead taking notes that included relevant
quotes and building transcripts post-interview as described by Ru-
takumwa et al. [48]. We conducted these interviews by video chat;
these lasted an hour on average with the longest lasting two hours
and the shortest forty-five minutes. This work is IRB-approved.

3.3 Analysis
We systematically coded and analysed transcriptions of these inter-
views using thematic analysis [8]. This process involves codifying
statements and observations from each interview, grouping state-
ments by initial themes, refining and evaluating themes, and then



extracting final themes. The first summary step converted the tran-
scriptions to 945 individual codes. The second step constructed 101
detailed themes. The final step extracted 6 overarching themes.

4 THEMES
In reviewing these interviews, we characterize tensions between
development and production, privacy and ubiquity, resource man-
agement and performance, and access and monopolization. In pre-
senting these themes, we focus on both those sentiments which
support prior research analyzing subsets of ML practitioners and
those sentiments which are underrepresented in existing literature.

4.1 “It’s Tough.” Tensions Between
Expectations & Feasibility

Human expectations typically manifest as projections of how the
model should behave (R2, R3, R5, R7, R8, R12, R13, R14, R17), and bal-
ancing human expectations and feasibility was a recurring theme.
Users, leadership, and even engineers often had unrealistic expecta-
tions, strong beliefs on the state of ML capabilities, and exceedingly
high standards based on prior experiences with other ML products.
Practitioners struggled to realize these expectations.

4.1.1 Users’ Expectations. Concerns of user expectations troubled
interviewees. R16 and R17 quickly learned that users wanted prod-
ucts that performed as well as Google Translate at a minimum, but
that achieving that level of translational proficiency is infeasible for
such early language-learning startups. Failing to meet user expecta-
tions would lead to a loss of trust (and ultimately users), but the data,
compute, and expertise required to reproduce this proficiency were
inaccessible. Both companies had contemplated paying for access
to Google Translate’s API, but this cost was equally untenable and
its use would introduce questions of flexibility and transparency
for future development. Instead of using proprietary systems, R16
and R17 were building their own models and datasets through in-
house labeling and user-provided data; both companies ultimately
limited the scope of their respective products to reduce risk. For
both companies, this decision potentially cost user engagement.

R8 similarly described experiencing “the big pushback” when
attempting to balance expected user behavior, convenience, and
the inherent opaqueness of external, proprietary models and APIs.
They considered proprietary models like Amazon’s AWS tooling to
be “good products,” if “a lot of black box work.” R8 struggled to bal-
ance meeting the users’ expectations—for which these proprietary
tools are often helpful—with the desire to audit, debug, and main-
tain control of their software. This fundamental tension between
meeting expectations—informed by exposure to Big Tech products
and models—and managing resource constraints was a concerning
and recurring message. These companies found this balancing act
to be exceptionally stressful, as they felt user expectations set an
untenably high bar given available funding, time, and experience.

4.1.2 Management’s Expectations. Interviewees found communi-
cating the limitations of ML to be challenging—especially with
non-technical management (R2, R3, R8, R10, R12, R15). For exam-
ple, R3 described a situation in which management identified a
seemingly common pattern, but their ML team found themselves
unable to extract this “data story” given their available resources.

Their leadership team identified a common pattern of people first
exploring wedding-related content such as dresses, then travel and
honeymoon ideas, and finally topics related to child rearing. The
team hoped to predict when users began this journey for content
curation. In practice, R3’s teamwas unable to extract this distinctive
trajectory from their data, disappointing leadership. R3 speculated
on the causes underlying this failure: they lacked access to labeled
groundtruth to assess predictions and needed additional context
outside the scope of their data to differentiate signal from noise.
They ultimately suggested this normative story of marriage, then
honeymoon, then child rearing might be less common in practice.

Some interviewees (R3, R10, R12, R8) regarded strong leadership
or stakeholder intuition as a warning sign when employing ML
tools and techniques. These interviewees found the combination of
low data literacy and strong intuition to be most concerning, and
remarkably common in both startups and non-tech companies. As
R12 explained, “CEOs and executives don’t really understand what
it takes [to develop and deploy ML],” particularly outside tech-first
organizations. One interviewee (R10) declared that in cases of low
stakeholder technical and data literacy, they opted not to pursue
contracts to avoid wasting time and resources.

4.1.3 Predicting Performance and Cost. The ML community is in-
creasingly aware of model under-specification, one symptom of
which is that training the same model multiple times on the same
data results in different defects [13]. Practitioners—particularly in
under-resourced environments—are patently aware of this chal-
lenge (R6, R13). At Big Tech companies, a common mitigation strat-
egy is to train a model multiple times on the same data, assess
the resulting models, and deploy the best of the bunch. In our in-
terviews, only the most technology-first company (R1) adopted
this approach. In line with other less-resourced organizations, R13
discussed how finances expressly prevented them from doing so.

R13 shared that they did not have the resources to train multiple
models for the same set of data. As they scaled their business, they
collected more data—in their case, data which mostly consists of
videos of dogs. With each new data collection iteration, they re-
trained their model using all available training data, resulting in
unpredictable performance drops. They had been debating decom-
posing their model into simpler models corresponding to specific
characteristics, such as dog breed. In this manner, they could scale
their product by introducing new models without the risk of com-
promising past performance on other breeds. Of course, the down-
side is substantial: instead of testing a single model, they would
need to test many. Further, they believed the larger model would
be more robust as it should better generalize to underrepresented
data—such as mixed breeds, or atypical characteristics—whereas
breed-specific models would be substantially worse.

In response to these challenges in developing models and predict-
ing ML development costs, many interviewees (R6, R7, R9, R15, R12,
R14) simply wondered whether deploying ML models was worth
the trouble at all. One interviewee (R7) had concluded it was not.
In reference to to their work in real estate they stated, “I don’t have
any worries about automating the quality checks,” but “we’ll never
have the density of data to really automate some of these things...
the ROI [Return On Investment] on automation might be low.” After
extensive preliminary development, R7 came to believe that human



intuition and domain knowledge was irreplaceable—models make
predictions based on known prior behavior, but domains like urban
property appraisals are inconsistent, constantly fluctuating based
on ever-changing human priorities.

4.1.4 Discussion: Expectations and Feasibility. Practitioners strug-
gled to meet human expectations—whether from users, from leader-
ship and management teams, or even from themselves. User expec-
tations are dynamic, but are largely informed by the practices of Big
Tech companies (R16, R17). When extremely well-resourced orga-
nizations release an ML product into the world, it raises the bar of
expected quality and effectively monopolizes access. To participate,
organizations must opt in to use of released, opaque models and
APIs or invest beyond their means in collecting data and modeling.

The lore of ML has resulted in non-technical management be-
lieving that pattern recognition should be straightforward, but
practitioners (R10, R3) often find themselves unable to meet these
unrealistic expectations. When we researchers talk about AI and
ML, and especially when we engage popular press in these conver-
sations, we establish expectations about the capabilities of ML. As
we release new models, tools, and techniques, we set user expecta-
tions for feasibility and quality standards. Small and less-resourced
organizations struggle to meet these expectations. With this monop-
olization of access, many questions arise: if organizations use pro-
prietary models downstream, how do they introduce transparency
or maintain autonomy? Who is responsible? And what are the
implications of these participation monopolies?

When developing models internally, interviewees cited several
potentially viable approaches to meeting these expectations, such as
replacing large, complex models with multiple, specialized models
targeting specific tasks (R13). But this is a relatively new topic,
and practitioners would benefit from guidance on when, how, and
whether to transition from a single model to multiple specialized
models. Understanding the costs and benefits for such transitions is
crucial as well—what are the monetary and environmental expenses
involved in training and evaluation for each choice [53]?

Further, while we often think of ML as a useful and perhaps in-
evitable tool, these organizations question that narrative (R6, R7, R9,
R15, R12, R14). The decision to implement ML typically falls to man-
agement and team intuition, and is sometimes merely employed as a
mechanism to drive investment (R6, R12). This community of long-
tail, less visible ML practitioners would benefit from standardized
recommendations for assessing when ML is most appropriate.

4.2 “A Hotbed of Bias.” Efforts to Assess,
Prevent, & Mitigate Bias

Nearly every organization we interviewed expressed substantive
concern over inadvertently deploying biased models (R1, R3, R4, R5,
R7, R10, R11, R13, R14, R16, R17). R11 stated this to be the “biggest
business concern” for companies incorporating ML, and other in-
terviewees shared similar sentiments (R16, R17). Yet strategies for
uncovering and mitigating bias and its impacts were consistently
underdeveloped, pointing to the potency of this problem.

4.2.1 Bias Mitigation Through Diversity or Personalization. A re-
markably common mitigation attempt to alleviate bias was through
the acquisition of sufficiently diverse data for model training and

evaluation (R16, R5, R8, R10, R3, R13, and R14). This strategy con-
trasts with academic approaches which aspire to debias models as-
suming fixed data, but mimics the broader practices of Big Tech [24].
Mechanisms for acquiring this diverse data include attempting to
develop a sufficiently diverse userbase (R16), ingesting data from
varied sources (R8, R10), augmenting available data (R11), collecting
diverse data in-house by assessing axes of diversity (R13), and incor-
porating participatory design principles directly into data planning
and collection mechanisms to ensure representational data (R14).
Another commonly proposed bias mitigation strategy considered
model personalization (R17, R16, R2, R13). By giving users increased
control over their models, these companies argued that their users
could tailor outcomes to their personal needs—circumventing the
problems of biased models, or so the logic goes.

Still, data-focused mitigation strategies suffered from drawbacks:
practitioners developed ideas of how models would behave on a
given dataset, but after each modification or retraining found the
resulting performance to be unpredictable. As such, R13 adopted a
slow and cautious update protocol: they avoided introducing new,
diverse data until user requirements deemed it strictly necessary.
By doing so, they minimized how frequently they updated—and
potentially broke—their models. R13 pursued this strategy as their
product was in Beta, and they found it offered greater consistency.
For a deployed model, though, this slow and cautious approach
to adding new and diverse data can exacerbate or prolong model
biases. Despite the increased risks, this slow and cautious strategy to
data changes is common in production: teams frequently use model
accuracy to appease investors (R5, R15), which may lead to them
opting to deprioritize data diversity to reach investor expectations.

In spite of their varied bias mitigation strategies, interviewees
nonetheless remained concerned about releasing biased models.
They lamented they had no systematic way of acquiring diverse
data (R13), of assessing the axes of diversity (R10, R13), or of as-
sessing and evaluating the performance of personalized models
(R17, R16, R2, R13). For example, R17 explained they were consider-
ing investing in federated ML for personalization—but assessing
the quality of each personalized model is hard [55], as is the engi-
neering challenge behind such a strategy. In two separate vision
applications, R13 and R6 further lamented that the scope of diver-
sity needs was far greater than they initially anticipated: they must
consider not only diversity of image subjects, but also the diversity
and quality of seemingly unimportant image backgrounds.

4.2.2 Assessing Blind Spots. A related concern is creating models
which suffer from blind spots: undetected failures due to missing
or biased data and inadequate test coverage. Many interviewees
identified human subjectivity in data collection and labeling con-
sistency as the root cause of these failures (R8, R15, R7, R3, R11),
contrasting in part with the research community’s broader con-
cerns that models do not learn the causal relationships within an
available, finite dataset [13]. Human subjectivity affects the full
development pipeline from deciding what data to collect to data
labeling to model assessment and evaluation. Some interviewees
expressed optimism about efforts to use internal quality metrics as
mitigation mechanisms to find and ultimately remove these blind



spots (R15, R7, R11, R3). R11 was similarly optimistic that by holis-
tically considering their data and performance, they would be able
to isolate data factors related to computational underperformance.

Still, interviewees were optimistic that ML could be deployed
responsibly: they believe model biases to be more scrutable than
human decisions (R7, R14, R5). One interviewee (R5) explained that
because they drew training and test distributions from the same
imaging devices, they believed they strongly upheld the assump-
tion that training and test data are independent and identically
distributed. Further, R5 had collaborations with insurance compa-
nies; they argued this resulted in increasingly representative data.
As a consequence, they asserted that they were insulated from
blind spots. Interviewees expressed desires for better assessments
of blind spots and model fairness (R10, R16, R13, R14).

4.2.3 Deferred Responsibility. Several interviewees expressed that
biased models were a possibility, but that these models could still
be deployed safely by leveraging a final barrier of human judgment
(R8, R5, R13, R11, R14): when faced with an incorrect assessment,
a human would be capable of overriding the model’s decision (R5,
R8, R11) or disusing the model (R14). We find this trend of deferred
responsibility to be common among these practitioners and trou-
bling. Past research has demonstrated that even when a human
is capable of outperforming a model when acting independently,
they tend to defer to model predictions when available [15, 54].
One interviewee (R4) expressed concern about this possibility of
unintentionally undermining human expertise. To safely deploy
their models, R4 was actively collaborating with a design team to
emphasize decision uncertainty. However, several other practition-
ers adopted a notion that building tooling to support downstream
users and organizations was unnecessary, believing that users were
sufficiently capable without this hand-holding (R11, R5)—a risky
position. This highlights the murky notion of responsible parties:
are developers responsible for the consequences of introducing ML,
or are end users and domain experts who use these models?

4.2.4 Discussion: Assess, Prevent, & Mitigate Bias. Risk and harm
assessments were recurring themes. When interviewees deferred
responsibility to others, they assumed their products could cause
minimal harm. When practitioners considered risks to be suffi-
ciently low, they felt little responsibility to consider the potential
for harm. These risks are not distributed equally: prescribing home
valuations (R7) is demonstrably more risky to human wellbeing
than ranking “cool” shirts (R3). Still, this is a slippery slope of com-
placency. We assert assumptions of minimal risk are inherently
biased and not appropriately calibrated against feedback from users
and stakeholders. Even a shirt recommendation can cause harm
and perpetuate inequality—e.g., if the model consistently demotes
Minority-owned brands. While many interviewees expressed con-
cern for the broader implications of their work (R1, R2, R3, R10, R11,
R13, R14, R17), several did not (R9, R6, R8, R12, R5). This apathy
was exacerbated when practitioners relied on humans to arbitrate
decisions. R5 explained that blind spots were “low risk,” with bad
outcomes resulting in a “$300 procedure instead of a $50-60 proce-
dure,” but the person receiving this treatment might not agree.

Trade-off considerations between robustness and accuracy were
a common theme. Instead of the intuitive or ad-hoc methods that

our interviewed organizations currently use to assess risk and miti-
gate bias, we suggest developing methods to recognize risks and
harm through atypical perspectives—such as by characterizing ex-
pected users and then assessing any embedded biases within these
expectations for rectification. Some companies bring in consultan-
cies to do this, but this is untenable with resource constraints. We
assert that the research community can help by designing tools
which actively encourage critical thinking, monitoring, and assess-
ment for data planning and modeling tasks [33, 34]. Such efforts
can better support these less-resourced organizations.

4.3 “You can poke and prod black box models,
right?” Black Boxes & Overconfidence

Concerns of bias are often associated with ML techniques operating
as “black boxes” [31]. Practitioners had a broad swathe of opinions
and strategies for managing, using, evaluating, and avoiding black
box models. Two comments were particularly surprising. First,
practitioners explained that ML models are not the only black boxes
they engage with—so this is familiar territory. Second, practitioners
were more optimistic about engaging simple prodding-and-probing
methods to understand black boxes than previously reported [25].

4.3.1 Black Boxes, Explanations, & Transparency. Prior work has
extensively engaged with concerns of learned black box models.
These works point to widespread desires for explanations [9, 25, 28].
We instead found practitioner opinions on ML explanations vary
widely. We found ambivalence to be a common sentiment toward
using black box models, particularly when the perceived potential
for harm was low (R2, R3, R5, R1, R13, R6). For example, R2 stated
they “don’t mind the unknown of black box,” though they “do mind
if it causes harm.” R5 stated explanations were not necessary as
their product only supports a human in diagnosis—so, again, the
black box is low risk. Similarly, R1 felt little concern using black
box models, with the caveat that “From an ethical perspective, I
don’t think one should write a model if they have no idea how to
tell when something goes wrong.”

Many interviewees (R2, R1, R9, R4, R3) pointed to the usefulness
of transparency through example, where examining sets of inputs
and outputs provided sufficient insight into the model behaviors
[7]. R3 wanted awareness for how a model reached its goal through
increased cognisance of the impacts their objective functions. They
detailed how, after adapting their recommendation model to op-
timize for click-through rate, their model began recommending
fuzzy pictures and “weird” content. Despite fulfilling their objec-
tive, the content was not useful to their users. To address this, they
introduced more stringent prodding-and-probing processes. While
Hong et al. [25] suggested this style of proding-and-probing exper-
imentation did not meet practitioners’ needs for transparency, we
instead discovered that interviewees found this process of experi-
mentation and rigorous documentation and versioning mitigated
their concerns about using black box models.

In addition, R4 and R10 desired classic ML explanations. R4
wanted to provide explanations to help users assess predictions,
believing this especially necessary for calibrating trust. For internal
interpretability use, R4 had implemented LIME [46] and feature im-
portance methods, but found these explanation methods unhelpful
for their end users. R10 also desired explanations, stating “nobody



wants a black box model.” As an intermediate solution, R10—a
consulting company—relied on Shapley Values [49] to increase cus-
tomer trust, though they noted it was not an ideal solution. They
cited two challenges: first, for each data type, they needed to design
a custom interface for providing these explanations. Second, they
found their users did not know how to interpret these values.

Finally, R8 presented a unique perspective on black boxes, stating
that “black box” could equally describe teams, processes, decisions,
proprietary models, and obfuscated APIs. R8 found these non-ML
black boxes to be equal sources of frustration. They opted to stop
using proprietary models as they found these hard to inspect when
problems arose. Similarly, undocumented API changes often intro-
duced data errors. Even people could act as “black boxes” when not
effectively communicating, and described letting go of an engineer-
ing team that wouldn’t explain their work. Ultimately, R8 saw black
boxes—whether models, processes, or people—as a tool to avoid.

4.3.2 Efforts to Mitigate Overconfidence. Overconfidence is a com-
mon ML problem wherein a model’s average confidence greatly
exceeds its average accuracy [21]. This is related, in part, to the
question of deferred responsibility: companies often sought to catch
errors by having humans assess low confidence predictions (R13, R5,
R4). In our interviews, discussions of overconfidence did not focus
on strategies for calibrating the confidence of models, as is trendy
in research [21]. Instead, interviewees typically described user-
facing mitigation strategies such as onboarding or uncertainty com-
munication. For example, R5 relied on onboarding users for their
predictive healthcare models and explained how healthcare prac-
titioners should interpret their confidence metrics. They stressed
these confidence metrics are not probabilities—100% confidence
does not indicate certainty, nor did 50% randomness. These pro-
prietary scores were designed with user feedback and practitioner
experience. The team also developed sensitivity thresholds for cate-
gories of healthcare practitioners, noting these practitioners tended
to have higher or lower tolerances for false positives. During their
onboarding process, they explained these sensitivity thresholds and
when to anticipate false positives or negatives.

In contrast to R5’s approach of relying on onboarding to mitigate
overconfidence, R4 sought methods to continuously calibrate user
trust and understanding. To do so, R4 collaborated with designers
to explore better presentation of uncertainty and curated model
explanations. In working with these designers, they expressed a
desire to present information in a “non-definitive way.” We argue
that the former approach of using onboarding and education to
mitigate overconfidence is unlikely to be effective: prior research
in the explainable AI and human factors communities has shown
that managing human responses to automated decisions is a major
challenge [15, 54]. Presenting information in a non-definitive way
has more promise, but uncertainty communication remains a well
studied yet unsolved problem [14, 39].

4.3.3 Discussion: Black Boxes & Overconfidence. Some intervie-
wees described black boxes as part of life—unavoidable, perhaps
frustrating, but certainly normal. Despite the ambivalence some
interviewees (R2, R3, R5, R15, R9, R13, R6, R1) displayed when dis-
cussing automated explanations for black box systems, others (R4,
R8, R10, R11) were deeply worried about their implications. While
these companies were willing to use these black box models as a

supporting measure—particularly for things humans are bad at, like
repetitive tasks (R13)—they were not willing to substitute ML in
place of human intuition. R7 explained, “I don’t have any worries
about automating the quality checks.” However, they also said this
of their higher risk property assessment use case: “the value of
something is not objective. If you had a perfect algorithm for what
something is worth, but then someone buys it for three times as
much, then that’s what it’s worth.” According to R7, no amount of
transparency could make these techniques sufficiently safe in this
context—they would always be conducted by a human.

In the explainable AI community, there is a latent assertion that
poking and prodding a model can never be sufficient for under-
standing a model; instead, we need a mathematically-meaningful
yet to-date-indeterminate mechanism to provide actionable insights
into the decision-making mechanics of ML models. Past research
with practitioners from Big Tech has confirmed a desire for this
form of meaningful explanation method [25]. However, many of
the practitioners we interviewed (R1, R2, R9, R4) expressed more
optimism about the idea of transparency by example, where ex-
amining sets of inputs and outputs allows developers or users to
build accurate mental models of the ML model. In contrast with
past research, these practitioners believed that adopting this testing
procedure could suffice for model understanding.

Still, some interviewees did desire explanations (R4, R10); their
desires reflected insights from Hong et al. [25] and Gosiewska and
Biecek [20]. These practitioners found explanation methods to be
unstable and did not generalize well to their contexts. Other in-
terviewees (R2, R4, R10) desired explanations for non-technical
stakeholders and users when uncertainty and overconfidence were
concerns. But these explanations are costly to set up—requiring
carefully crafted user interfaces and broader tooling—and are still
very limited. R4 explained that the methods they had tried—LIME
and feature importances—were insufficient at communicating un-
certainty, reflecting recent work by Bhatt et al. [6]. This similarly
aligns with prior research on uncertainty communication show-
ing shown numerical representations are not effective at this, nor
are confidence intervals [11, 27]. We suggest future work in expla-
nations emphasize uncertainty communication and participatory
design processes [38], as there is a desire for this work and rich
prior literature in Data Visualization and HCI communities [39].

Onboarding for ML products and tools is an underexplored area.
Cai et al. [10] detailed how clinicians benefit from onboarding cover-
ing the basic properties of a learned model, such as known strengths
and weaknesses, its development point-of-view, and design objec-
tives. R5’s approach overlaps with these recommendations, but
could benefit from increased transparency and focus on positioning
the model’s capabilities with respect to the downstream domain
expert. Like Cai et al. [10] suggest, we believe the onboarding pro-
cess for human-AI teaming should be continual and evolving, and
should re-address use and understanding of tools over time. On-
boarding should be designed based on studies of how users interact
with the model, and should progress as users’ mental models de-
velop through use and exposure. In particular, any time an AI tool is
updated—especially considering that updates may break human ex-
pectations of model performance without warning [3]—onboarding
should be readdressed.



4.4 “Data Literacy Is Not a Silver Bullet.”
On Communication & Collaboration

As documented in prior work, ML practitioners do not work in iso-
lation [41]. Instead, their projects typically require collaborations
with domain experts and other cross-functional collaborations. Ev-
ery interviewee raised effective communication as critical to their
work, and R3 described this simply as “really tough.” Despite the
impactfulness of effective communication, best practices were never
codified, and instead comprised of unwritten institutional knowl-
edge and “water cooler talk” (R1).

4.4.1 Effective Communication. Interviewees cited communication
as the principle mechanism to reduce and mitigate the risks of using
ML (R4, R5, R8, R7, R15, R10, R11, R14, R1). Unsurprisingly, when
communication was lacking, practitioners found they wasted time
and money on disagreements (R8) and inappropriately targeted
work (R11, R14, R1). Several interviewees discussed data literacy as
a bottleneck to effective communication (R8, R10, R14). R8 discussed
how mismatches between human expectations of business narra-
tives and the analytics led to data insights being ignored: “A couple
people in the company have a narrative in their head already, and if
the analytics don’t support that narrative, they don’t want anything
to do with those analytics.” When stakeholders do not understand
the metrics, they also do not trust the output—resulting in wasted
effort (R8, R14). In response, R8 routinely engages in negotiations
with business teams, often requiring external mediation to resolve
disputes. Similarly, R14 lamented the “politics around the numbers”
and how these so-called politics undermine their work. However,
R14 also cautioned that a domain expert who was too technical was
equally challenging to establish a productive working relationship
with: instead of expressing their needs, these technical stakeholders
spend time anticipating potential analytics pitfalls.

4.4.2 Institutional Knowledge. Over the life cycle of a project, ML
practitioners become more familiar with their data, models, and
domain. This evolving awareness affects data collection and model
iteration but is typically shared person-to-person, not systemat-
ically. For example, R10 tracked large data and model changes
through “informal discussions,” while R8 ran scripts on an ad-hoc
basis to check for data quality errors they noticed over time. Simi-
larly, R17 described learning to intuitively assess the importance
of errors based on past user feedback. These insights were rarely
documented, but were often embedded in code and shared through
conversations. We refer to this as institutional knowledge: informa-
tion that exists across a team but is not recorded. Existing literature
charmingly describes institutional knowledge as “the stuff around
the edges” [32], considering the context, history, background, and
knowledge entwined in artifacts like data and models. Yet, this
raises questions of project permanence and responsible develop-
ment: undocumented information will likely be forgotten. Only R14
described efforts to explicitly document this acquired knowledge,
citing metadata as their primary tool for explicating changes to
datasets. We speculate that this effort is a consequence of their
team’s positioning within a public municipality office.

4.4.3 Discussion: Communication and Collaboration. Developing
stakeholder alignment is not a new challenge, but ML and data con-
texts introduce new gaps in vocabularies and experiences. Tools that

assist non-technical stakeholders might bridge these gaps through
by supporting data literacy and learning [26]. Practitioners cur-
rently struggle to bridge these gaps, but doing so is critically impor-
tant, particularly when practitioners are not domain experts and so
need stakeholder insight for new features [56].

Relying on institutional knowledge is also not unique to ML
development. Nonetheless, we see this as an area which lacks suf-
ficient investment both in research and in practice, and which
could be improved through the introduction of comprehensive stan-
dards [4, 23, 34]. An added benefit of more consistent artifacts is
the increased potential for internal auditing and quality checks
during development [44]. Even beyond ML development, practi-
tioners need careful consideration of the value of ML development
to answer is it necessary? Future work should produce tools for
comprehensive social-systems analyses encouraging stakeholders
to examine the possible affects of models on all parties.

4.5 “Experiment, Iterate, See We’re Getting
Closer.” A Model Is Never Finished

The life-cycle of a MLmodel requires continuous refinement. This is
part and parcel of both an organization’s growth and practitioners’
increasing awareness of model limitations. Practitioners’ response
to challenges in planning, iterating, and evaluating are varied and
often reactive. These responses are best characterized by what one
interviewee called a “lack of best practices in training” (R11). Prac-
titioners sought to improve their work despite resource constraints,
operating under yet another catch-22: investing in reflection and
refinement while staying within budget.

4.5.1 DataQuality: Planning, Ingesting, & Cleaning. In line with ex-
isting literature [22], we found that ML development is significantly
hampered by challenges in data collection, management, and use.
Nearly every company struggled to standardize data entry, collect
enough data, and collect the right data to both mitigate bias and
encourage robustness. R1 was the only exception, as they worked
primarily on ML tooling and not immediate business applications.
A major challenge in building ML models was predicting data re-
quirements for good performance: interviewees complained their
initial estimates were substantially incorrect, and explained that
they actively seek to collect more and additional sources of data (R4,
R12, R8, R3, R13, R6). Understanding data coverage needs by assess-
ing real world variability and translating this to data requirements
remains an open question in the ML community.

Because of this open question, practitioners often developed a
reliance on a subset of trusted data (R12, R17, R9, R3, R14, R6). R3
explained that they scoped their recommendations based on the
quality and consistency of the available data. They tried adding rec-
ommendations for brands with worse data cleanliness, but “it affects
the models, because every bit of data you have is fragmented across
hard-to-reconcile records.” They were not willing to take on the risks
that messier data introduced to their recommendations. Instead, they
relied on data from a small set of familiar brands, explaining that
while they considered promoting diverse brands, investing in data
cleaning was ultimately too costly given the company’s precarious
position in entering the market. Lastly, companies found that even
in labels provided by domain experts, labeling inconsistencies and



disagreements were common problems. In response, several com-
panies developed complex routines for building consensus (R4, R5,
R13, R8). These findings support work by Hohman et al. [22], em-
phasizing that challenges in data management are universal but are
nonetheless often deprioritized when facing resource constraints.

4.5.2 Many Methods of Evaluation. In all of our interviews, we dis-
cussed the immense challenges of model evaluation extensively. No
two companies had the same process, but every process involved
multiple evaluation mechanisms. Above all else, extensive manual
evaluation using hand-selected test cases was key to these strate-
gies (R7, R16, R4, R8, R5, R17, R3, R13, R11R1). This first evaluation
step was described as “weak but useful” by R3. Beyond manual
evaluation, many companies implemented supplemental A/B test-
ing (R3, R1) or beta tests with in-the-wild users (R16, R4, R17, R13,
R14, R1, R6). Several interviewees discussed the tradeoff between
using extensive in-house evaluation and relying moreso on user
feedback (R13, R11, R17, R16, R2, R15, R7): user feedback is signifi-
cantly cheaper and contains additional signal on whether errors are
impactful to users, but mistakes cost user trust and engagement.

Interestingly, R4 compared beta testing models to their clinical
trials with veterinarians. They considered this process necessary
partly due to the black box nature of ML models, but also because
they found it to be useful for assessing the broader impacts of de-
ployment. They emphasized a desire to bring the rigor of clinical
trials to their model evaluation—for example, through randomized
control trials assessing the introduction of models to veterinary
businesses. R10 also proposed adopting the scientific processes to
assess ML by formulating and testing hypotheses. Both sentiments
follow proposals to adapt the scientific study of behavior to “intelli-
gent” computational models [43]. Lastly, none of the interviewees
indicated that they had an effective methodology for evaluating
fairness—though several expressed this as a desire (R14, R10, R13),
and R10 was exploring Model Cards [34] as a step in this direction.

4.5.3 Model and Data Versioning. Many interviewees desired bet-
ter model and data versioning (R2, R15, R10, R5, R8, R7, R3, R13).
Some companies pointed to recent distribution shifts caused by
COVID-19 as highlighting its importance (R7, R8, R4). Still, version-
ing remained elusive, and R17 explained their company was “too
early” to invest in it. Four companies (R1, R4, R13, R8) did extensive
model versioning. R1 included complete versioning of all the “data
that went in, and the code as well” as a component of their evalua-
tion pipeline. R13 and R8 version “everything,” and R13 explained
they’re only able to afford this process because of a Google Cloud
credit award. Were it not for these credits, they would not have the
storage capacity needed to version their models and datasets.

Metadata is critical for evaluating data, directing modeling itera-
tion, documenting changes, and retroactively incorporating data
and model versioning (R14, R1, R12, R2, R3). R14 explained they
relied on metadata to identify “what worked within a dataset” as
metadata can reflect “things that are taken care of as the project is
going on.” Similarly, R1 relied on metadata to inform their work,
even training overnight based on “metadata considerations.” When
creating groundtruth, R12 explained their central question is, “what
metadata do I need to make sure this product matches the end
description?” Metadata serves as documentation for institutional
knowledge, yet remains an underutilized resource.

4.5.4 Discussion: A Model is Never Finished. Each interviewee
adopted different processes for evaluating their models. This is
not surprising: mechanisms for effectively testing ML models re-
main rudimentary, and recommendations inconsistent. We assert
the research community should produce consistent testing recom-
mendations, with an increased focus on test cases [7, 47] and model
fairness assessments [34]. Prior work described comparing multiple
models as crucial during evaluation [25], yet we found interviewees
rarely implemented this process—while it is common to train mod-
els on different subsets of data, hyperparameters, or with different
seeds in parallel, resource constraints can make training multiple
models for comparison impossible (R17, R13, R8, R16). R4’s proposal
of using randomized controlled trials and other processes adopted
from clinical trials to assess models is compelling. We believe the
research community should further recommend best practices for
adapting these evaluation mechanisms for ML contexts [59].

ML experience levels affected development practices. In cases
where teams lacked ML experience, poor modeling decisions were
followed by periods of indecision (R12). In some cases, these teams
might end ML development entirely (R12). More mature teams
(R6, R10, R14, R1) emphasized the fleeting lifespan of models and
encouraged team members to prioritize frequent retraining, mini-
mally complex models, and a willingness to “throw it out” (R6). In
contrast, less experienced organizations might not afford retraining
and replacing models, or lacked the experience to build modularity
into models. As such, R3 characterized ML development as notably
slow and defensive compared to other engineering tasks. We were
reminded of parallels in software development best practices: guide-
lines made code cleaner and easier to debug or replace [40]. We
believe future work adapting these practices for ML development
and maintenance would be beneficial to practitioners.

4.6 “GDPR Doesn’t Affect Us.” Assessing
Tensions Between Privacy & Growth

Machine learning necessitates the collection and management of
large data collections. As a consequence, recent legislation such as
GDPR and the CCPA have broad implications for the discipline. We
asked interviewees about their relationships to these and other pri-
vacy legislation works to assess how practitioners are responding.

4.6.1 Government Regulation & Privacy Policy Impacts. The aca-
demic community continues to debate if GDPR encompasses the
right to an explanation for an automated decision, but collectively
agrees that GDPR encodes at least the right to be informed [19].
While the former interpretation has stronger implications for ML
practitioners, both should have some affect. GDPR is complemented
by emergent legislation seeking to protect user privacy—with many
implications for data collection and handling [52]. We asked ML
practitioners how this legislation affected their practices. Though
R10 noted their company’s legal team guided them on GDPR and
other regulations, no interviewee indicated that they were directly
concerned with the requirement to provide an explanation, despite
using black box models extensively. By and large, interviewees
expressed that GDPR and other legislation had not impacted their
work in any substantive capacity (R2, R9, R16, R10, R4, R8, R3, R11).

A few interviewees explained that, to comply with GDPR, they
leveraged their nature as platforms to avoid collection of personally



identifiable data (R4, R10, R8). Others lamented minor inconve-
niences relating to GDPR, such as increased latency from using
remote servers based in Europe (R10) or vague concerns over future
implications for cloud use (R11). One interviewee (R1) described
how their company responded to GDPR by extensively changing
their data handling practices, devoting over six months of engi-
neering time to ensuring compliance. We should note that this
company was both well-resourced and publicly listed. While they
bemoaned that deletion requests do come in, and are “a pain in the
ass,” the interviewee explained that the process of adopting GDPR
compliance in data handling had actually been immensely benefi-
cial to the company. GDPR forced their company to develop better
awareness of and practices for handling data, and this re-evaluation
increased their overall data competencies. Despite implementing
these extensive changes to data handling, R1 nonetheless remained
unconcerned with any notion of a “right to an explanation.”

4.6.2 Privacy Legislation is Insufficient. A common sentiment was
that privacy legislation continues to be insufficient to protect users.
Interviewees often felt it necessary to implement their own policies
and tooling beyond any requirements (R17, R16, R13, R3, R6). In the
absence of stronger privacy legislation, companies aspired to act
“without malcontent whenever possible” (R3). Companies continue
to internally assess their responsibilities to users’ privacy, but find
themselves attempting to balance these responsibilities with other
desires. Many companies discussed managing the tension between
user privacy and their desires to become ubiquitous, and to collect
ever more extensive datasets (R16, R17, R13, R2, R3, R6).

4.6.3 ML to Satisfy Regulators. While we asked interviewees about
how legislation changed their ML development and data practices,
one interviewee explained that they instead used ML to respond
to regulatory requirements (R7). In their real estate assessment
business, regulations require reporting on properties’ conditions
and features. While their ML models had insufficient accuracy to
meet consumer expectations, they found this accuracy rate to be
acceptable for ensuring broad-sweeping regulatory compliance.

4.6.4 Discussion: Tensions Between Privacy and Growth. The rela-
tionship between privacy legislation andML development is curious.
From the researcher’s perspective, the world is abuzz with chatter
about the implications of GDPR for explanations of automated deci-
sions. Yet, every practitioner we interviewed was unaware of these
discussions, let alone the need to revise ML development practices
in response. GDPR and other privacy legislation had started to
affect data practices, but ambiguity abounds: while one company
implemented extensive changes to their data management systems
(R1), none of our interviewees considered the implications of these
deletion requests for ML models. Should this deleted data also be
deleted from any model training, test, and validation sets? Should
themodel itself be deleted in response to the request [18, 57]? These
questions go unanswered in the research community, and unnoticed
in these practitioners’ realms. Organizations (R16, R17, R13, R2, R3,
R6) continue to self-moderate ideas of “acting without malcontent”
(R2)—analogous to Google’s antiquated motto of “Don’t be evil.”
These organizations experience tensions between their desires to
sustain and grow their businesses, and to protect user interests.

5 CONCLUSION
When discussing ML practice with smaller and less visible orga-
nizations, we find these practitioners have many commonalities
with their Big Tech counterparts: desires for explanation, lack of
standardization, and unending difficulties communicating with
stakeholders. We also uncover several new, divergent findings:
for example, in contrast with past studies, the practitioners we
interviewed expressed optimism for transparency through exam-
ple, noted access differentials for bias mitigation, and experienced
subdued implications from privacy legislation on ML development.

Most critically, resource constraints affect the development of
responsible ML and amplify existing concerns about the challenges
of responsible and fair ML development for these interviewed or-
ganizations. These constraints continuously affect the work that
companies and organizations invest in; for example, while several
companies wanted to invest in explanations for ML models, they
found the costs of developing these techniques to be too high, es-
pecially given the “researchy” nature of these tools. Intuitively, the
resource constraints of startups and small companies encourage
increased caution in decision-making, but this requisite careful
planning is untenable without sufficient experience and domain
knowledge—both of which are difficult to acquire. Instead, organi-
zations found predicting ethical and financial costs to be difficult,
causing them to reconsider incorporating these methods. New (ML)
product explorations were accompanied by exploding budgetary
requirements. R6 suggested that, as with other forms of engineering
work, predicting costs for ML requires experience and exception-
ally large buffers of both time and money due to increased risk
or complexity. But many of these companies lack the necessary
expertise to assess cost and found the “cost of going external [to
be] too high” (R8). These buffers of time and resources represent
untenable costs for organizations actively seeking investment.

Finally, assessing the social implications and necessity of model-
ing is important but risky—in Big Tech teams, misunderstandings
and oversights do not collapse the business. Big Tech has large
teams with expertise in data and ML, as well as extensive invest-
ment in in-house tooling. In contrast, many interviewees lamented
the challenge of hiring ML talent (R4, R8, R12, R15, R2, R17, R16),
and the lack of accessible and comprehensive tools to assist in
much-needed bigger picture analyses. One interviewee suggested
less-resourced organizations’ products are especially prone to “ex-
hibiting this bias” because of limited resources and expertise (R11);
all the more reason to center these practitioners as we consider the
challenge of responsible ML development.

The potential benefits of ML technology must be spread beyond
the agenda of Big Tech and into all corners of society, yet the van-
guard of small organizations implementing ML struggle to realize
the hype. We identify challenges across company and stakeholder
expectations, bias, explainability and overconfidence, data literacy,
model lifecycles, and privacy that lead to a sobering picture: At
this point in time, opinion was mixed across our organizations
on whether implementing ML was even a worthwhile exercise.
Through our discussion, we highlight how and why implementing
this promising technology can be especially fraught for resource-
constrained organizations, and so draw attention to areas requiring
further study from the broader machine learning community.
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