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ABSTRACT
Learning how robotsmove is difficult, but theories of human concept
learning can be applied to support humans in this task. We draw
insights from the Variation Theory of Learning, a theory that has
beenvalidated in the learning sciences throughdecades of classroom-
based studies. Variation Theory prescribes experiencing patterns
of structured variation, where some aspects of concepts are held
constant while other aspects vary. The result of experiencing these
structured patterns is that human learners develop accurate and
flexible conceptual models. Through a preliminary study, we show
that using insights from Variation Theory improves humans’ ability
to predict robot motions: accuracy in predicting motions increases
from 52.4% using a familiarization-based strategy to 70.2% using
a Variation-based strategy. Applying Variation Theory especially
increases the human’s accuracy in predicting robot motions in novel
settings (increasing from 50.0% to 72.4% accuracy).

1 INTRODUCTION
Many works in human-robot interaction focus on improving robots’
abilities tomodel humanbehaviors [6, 8, 10, 14]. The inverse problem
is equally important: building accurate mental models is essential in
human-interactive robot learning settings, and is especially helpful
for enabling people to work safely in close physical proximity to
robots. By understanding the robot’s exhibited behaviors and how
these differ from the human’s intentions and preferences, a human
can become a more effective robot teacher [2, 11]. How can hu-
mans learn to predict robot motions?We use theories of human con-
cept learning—particularly, the Variation Theory of Learning [9]—to
teach humans to form these conceptual models. Through a prelim-
inary study, we show that applying the insights of Variation Theory
increases humans’ accuracy in predicting robot motions especially
in novel settings. Without applying Variation Theory, humans are
mostly restricted to collaborating with robots which exhibit pre-
dictable and not purely functional motions [4]. By applying the
insights of Variation Theory, we find people are better able to learn
to predict even functional and non-intuitive robot motions.

2 BACKGROUND&RELATEDWORK
Dragan and Srinivasa studied how people learn to predict robot
motion [3]: specifically, they studied how familiarizing people to
robot motions by showing multiple examples of the robot moving
could help people predict how the robot would move in the future,
either in previously-experienced or in novel settings. In particular,
this work compared humans’ ability to learn to predict natural and
unnatural motions. Natural motions are designed to mimic human
motions, while unnatural motions are designed to seem counter-
intuitive and artificial. Intuitively, Dragan and Srinivasa found that

Figure 1: Participants watch videos of the robot moving from start
(left) to end (right) positions to learn to predict the robot’s motions.

adding a process of familiarization significantly increased humans’
accuracy in predicting the natural robotmotions compared to a base-
line without familiarization. However, as the motion became less
human-like, familiarization ceased to improve humans’ ability to
predict the robot’s motion. We build on this work, and ask: can we
teach people to better predict unnatural motions, too?

People may become better at predicting robot motions if they
learn about the underlying concepts which govern a motion plan-
ner’s expressed behaviors [1]. To support humans in learning these
concepts, we look to the Variation Theory of Learning for guid-
ance [9]. Variation Theory is a classroom-tested theory of human
learning [7, 16]; it prescribes a sequence of patterns of variance and
invariance to help humans comprehend and establish the bounds
of concepts. The first step of Variation Theory involves repetition,
or exposing the learner to the same concept repeated multiple times
in the same setting. The familiarization intervention of Dragan and
Srinivasa’s study [3] can be interpreted in part as repetition.

The second step of applying Variation Theory is to use contrast, in
which the human experiences an example of the concept with some
aspects held constant alongside out-of-concept examples. Contrast
is interesting for the HRI community as it indicates that to build hu-
man comprehension, people need to experience counter-examples
of robot behaviors—which is rare in practice. The third step of Vari-
ation Theory is generalization, or exposing the learner to the same
concept with varied superficial details. This generalization step is
also embedded in Dragan and Srinivasa’s familiarization process [3].
Variation Theory has numerous insights and recommendations, but
we restrict our analysis to studying the benefits of including the
second prescribed—and infrequently incorporated—step of contrast.

3 HYPOTHESES
We formulate hypotheses about how the addition of repetition and
contrast improve people’s ability to learn to predict robot motions.
• H1: Experiencing contrast when learning about robot motions im-

proves people’s ability to subsequently predict robot motions when
compared to a familiarization baseline. This first hypothesis con-
cerns people’s ability to predict future robotmotions in all settings:
both those previously experienced as well as novel settings.
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• H2: Experiencing contrast when learning about robot motions im-
proves people’s ability to subsequently predict robotmotions innovel
settingswhencompared toa familiarizationbaseline.VariationThe-
ory is especiallyhelpful for creatingflexible conceptualmodels sup-
portinggeneralizationofknowledge tonewsettings.We thus focus
on whether people can predict robot motions in novel settings.

4 METHOD
We test humans’ ability to predict robot motions, following the pro-
tocol of Dragan and Srinivasa [3].We created threemotion planners:
one which generates natural motion, and twowhich generate unnat-
uralmotions. For naturalmotion,weusedCHOMPwith the standard
cost function [13]. For the first unnatural planner, we determined
the desired end position using the natural motion planner. We ro-
tated each joint sequentially to its end position and moved joints in
order of distance from the end effector—i.e., the “wrist” joint moves
first. For the second unnatural motion planner, we inverted the joint
order—i.e., the “shoulder” moves first. Since the wrist-first motion
controller generates the least intuitive motions, we believe it is the
hardest for humans to predict.We aim to support humans in learning
to predict the motions of the wrist-first motion planner.

We used a Franka Panda positioned behind a table for this study
(Fig. 1). We discretized the robot’s reachable space into 28 target
locations: 14 on the table and 14 on an elevated plane above the table.
We test humans’ accuracy in predicting robot motions by asking
them, for each scenario, to choose between three videos showing dif-
ferent motions (generated by the three motion planners) which start
and end in the same position. The human’s objective is to identify
whichmotions are generated by the “correct” motion planner, which
exhibits the unnatural wrist-first motions. In the familiarization and
contrast interventions, twoof these scenarios are designated as Level
1: these start andend inpositionswhich thehumanexperienced. Four
other scenarios test their ability to predict motions in novel settings.
These scenarios are either designated as Level 2 when the start posi-
tion is novel or Level 3 when the end position is novel. Every partici-
pant answered the same accuracy test consisting of 6 scenarios, 2 for
each level. At the end of the study, participants were asked to briefly
describe the robot’s strategy for how it moves towards the goal.

In this study,wecompare theeffectof three teaching interventions
prior to this accuracy test. These consist of a baseline (i.e., no teach-
ing), familiarization (showing only correct motions) and contrast
(showing both correct and incorrect motions). In the familiarization
and contrast interventions, participants watched 14 videos of robot
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Figure 2: Accuracy increased from 2.0% in the baseline to 52.4% with
familiarization to 70.2%with contrast; these differences are further
evaluated in novel and experienced settings. Error is standard error.

motions. With familiarization, each video corresponded to the robot
moving from a fixed start location to a different target location (i.e.,
14 target locations in total). With contrast, the human saw side-by-
side videos of both unnatural motion controllers with one indicated
as correct. To keep the number of videos the same, each human
saw only 7 target locations, equivalent to the first 7 familiarization
targets, since they saw two videos per location under contrast.

We ran this IRB-approved study on Prolific with subjects who
were 18 or older [12]. In the baseline study, the subjects watched 18
videos; this baseline study tookapproximately15minutes, andpartic-
ipants were paid $3.75USD. The familiarization and contrast studies
each took around 30 minutes with 32 videos, and subjects were paid
$7.50USD. Across all conditions, 8 subjects failed attention checks;
we removed these subjects’ data. 18 subjects were included in the
baseline condition, 19 subjects were included in the familiarization
condition, and 21 subjects were included in the contrast condition.

5 RESULTS
With no teaching, users identified robot motions with 2.0% accuracy.
This low accuracy is expected; 89.9% of responses incorrectly se-
lected the natural motion. With familiarization, users’ accuracy rate
increased to 52.4%, reaffirming Dragan and Srinivasa’s findings [3].
With contrast, users’ accuracy rate further increased to 70.2%. A
two-sample T-Test indicates we cannot reject the null hypothesis
that the mean accuracies between familiarization and contrast are
the same: 𝑡 (38)=−1.43, 𝑝=0.08. While not statistically significant,
the large accuracy improvement suggests the contrast intervention
has promise. This accuracy improvement provides trending support
for hypothesis 1: Experiencing contrast when learning about robot
motions improves people’s ability to predict robot motions.

Across settings, adding contrast increased accuracy rates, with
an especially pronounced difference in novel settings. For settings
previously experienced during teaching (Level 1), participants in
the familiarization variant were 57.1% accurate compared to 65.8%
with contrast. For novel settings (Levels 2 and 3), the contrast partic-
ipants had higher accuracy (72.4%) than familiarization participants
(50.0%). A two-sample T-Test indicates that we can reject the null
hypothesis: 𝑡 (78)=−2.35, 𝑝=0.01. This accuracy improvement may
be a consequence of participants using contrast to establish concept
boundaries, improving their ability to infer constraints of motion
in unseen dimensions of variation. We find support for hypothesis
2: Experiencing contrast when learning about robot motions improves
people’s ability to predict robot motions in novel settings.

6 DISCUSSION& FUTUREWORK
When asked to describe the robot’s strategy for how it moved to
the goal, one user mentioned they “mimicked the robot’s move-
ments” to understand how it moved, which implies they may be
using a different form of concept learning, analogical transfer, for
comprehension [1, 5, 15]. Future work could further analyze how to
best support analogical transfer for learning, alongside or instead
of variation. It could also assess whether applying contrast remains
helpful for robots with different morphologies. Another direction
could be to incorporate the two further steps of Variation Theory
(generalization and fusion) to assess whether they equally improve
humans’ ability to learn the concepts underlying robot motions.
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