
The Perils of Trial-and-Error Reward Design:
Misdesign Through Overfitting and

Invalid Task Specifications

Julie Shah Alessandro AllieviBrad Knox Peter StoneScott NiekumSerena Booth

AAAI 2023

Imagine you want to design a new
environment for using or benchmarking RL.

Imagine you want to design a new
environment for using or benchmarking RL.

How do you approach this?

A trial-and-error process

Step 1: Design a candidate MDP

A trial-and-error process

Step 1: Design a candidate MDP

Step 2: Pick an RL algorithm for testing

A trial-and-error process

Step 1: Design a candidate MDP

Step 2: Pick an RL algorithm for testing

Step 3: Learn a policy

A trial-and-error process

Step 1: Design a candidate MDP

Step 2: Pick an RL algorithm for testing

Step 3: Learn a policy

Step 4: If the policy isn’t right, update the MDP
(especially the reward function) and repeat

This trial-and-error process is common.

We surveyed 24 expert RL practitioners;
92% used trial-and-error to design their

most recent reward function.

“The reward signal is your way of
communicating to the agent what you want

achieved, not how you want it achieved”

- Sutton & Barto

For a Dyna-Q+ agent, Sutton & Barto
replace the reward function r with r + κ τ.

(This additional term encourages exploration.)

Why does reward design practice matter?

Why does reward design practice matter?

Why be concerned about trial-and-error?

A Known Concern: Unsafe Shaping

Ng, Harada, and Stuart, 1999

Potential-based shaping is
known to be safe*,
meaning optimal policies
are unchanged.

* Under some assumptions

A Known Concern: Unsafe Shaping

Ng, Harada, and Stuart, 1999

Potential-based shaping is
known to be safe*,
meaning optimal policies
are unchanged.

But trial-and-error reward
shaping is typically not
potential-based.

* Under some assumptions

A Known Concern: Misspecification

Amodei et al., 2016; Knox et al., 2021

Reward functions are
often wrong and/or
underspecified.

A Known Concern: Misspecification

Amodei et al., 2016; Knox et al., 2021

Reward functions are
often wrong and/or
underspecified.

Does trial-and-error
reward design make this
problem worse?

A New Concern: Overfitting

Test Algorithm

Pe
rf

or
m

an
ce

Timesteps

A New Concern: Overfitting

Test Algorithm Other Algorithms

Pe
rf

or
m

an
ce

Pe
rf

or
m

an
ce

Timesteps Timesteps

A New Concern: Overfitting

Test Algorithm Other Algorithms

Pe
rf

or
m

an
ce

Pe
rf

or
m

an
ce

Timesteps Timesteps

A New Concern: Overfitting
Can reward functions be overfit to learning
algorithms and hyperparameters?

Test Algorithm Other Algorithms

Pe
rf

or
m

an
ce

Pe
rf

or
m

an
ce

Timesteps Timesteps

A New Concern: Overfitting
Can reward functions be overfit to learning
algorithms and hyperparameters?

We study the implications of
trial-and-error reward design.

We study the implications of
trial-and-error reward design.

We do so with both computational studies
and controlled observation user studies.

On the Shoulders of Giants…

On the Shoulders of Giants…

Singh 2009, Where Do Rewards
Come From?
Faust 2019, Evolving Rewards to
Automate Reinforcement Learning

Optimizing Rewards for Learning

On the Shoulders of Giants…
Optimizing Rewards for Learning Reward Misdesign

Singh 2009, Where Do Rewards
Come From?
Faust 2019, Evolving Rewards to
Automate Reinforcement Learning

Amodei 2016, Concrete Problems in
AI Safety
Knox 2021, Reward (Mis)Design for
Autonomous Driving

On the Shoulders of Giants…
Optimizing Rewards for Learning Reward Misdesign

Singh 2009, Where Do Rewards
Come From?
Faust 2019, Evolving Rewards to
Automate Reinforcement Learning

Amodei 2016, Concrete Problems in
AI Safety
Knox 2021, Reward (Mis)Design for
Autonomous Driving

RL Reproducibility

Henderson 2018, Deep
Reinforcement Learning that Matters
Engstrom 2019, Implementation
Matters in Deep RL

On the Shoulders of Giants…
Optimizing Rewards for Learning Reward Misdesign

Reward Function Inference

Singh 2009, Where Do Rewards
Come From?
Faust 2019, Evolving Rewards to
Automate Reinforcement Learning

Amodei 2016, Concrete Problems in
AI Safety
Knox 2021, Reward (Mis)Design for
Autonomous Driving

RL Reproducibility

Henderson 2018, Deep
Reinforcement Learning that Matters
Engstrom 2019, Implementation
Matters in Deep RL

Hadfield-Menell 2016, Inverse
Reward Design
He 2021, Assisted Robust Reward
Design

Hungry Thirsty Domain

Singh et al., 2009, Where Do Rewards Come From?

Hungry Thirsty Domain

Food in one random corner; water in
another.

Singh et al., 2009, Where Do Rewards Come From?

Hungry Thirsty Domain

Food in one random corner; water in
another.

The goal is to eat as much as possible,
but the agent can only eat if not thirsty.

Singh et al., 2009, Where Do Rewards Come From?

Hungry Thirsty Domain

Food in one random corner; water in
another.

The goal is to eat as much as possible,
but the agent can only eat if not thirsty.

If the agent drinks, it becomes not
thirsty. If the agent doesn’t drink, it
becomes thirsty with 10% probability.

Singh et al., 2009, Where Do Rewards Come From?

Hungry Thirsty Reward Functions

State consists of x-y coordinates,
hunger status (H), and thirst status (T).

Singh et al., 2009, Where Do Rewards Come From?

Hungry Thirsty Reward Functions

State consists of x-y coordinates,
hunger status (H), and thirst status (T).

Unshaped reward function (sparse):

Singh et al., 2009, Where Do Rewards Come From?

Hungry Thirsty Reward Functions

State consists of x-y coordinates,
hunger status (H), and thirst status (T).

Unshaped reward function (sparse):

Unsafely shaped reward function:

Singh et al., 2009, Where Do Rewards Come From?

Preliminaries

Define the true task performance metric:

Hungry Thirsty True Performance Metric

True performance metric is the
number of timesteps not hungry:

Preliminaries

Let be a distribution of learning contexts consisting
of algorithms, hyperparameters, and/or environments.
Consider a sample of : .

Preliminaries

Let be a distribution of learning contexts consisting
of algorithms, hyperparameters, and/or environments.
Consider a sample of : .

We define a reward function to be overfit with
respect to the sample if there exists another reward
function such that:

Preliminaries

Let be a distribution of learning contexts consisting
of algorithms, hyperparameters, and/or environments.
Consider a sample of : .

We define a reward function to be overfit with
respect to the sample if there exists another reward
function such that:

Preliminaries

Let be a distribution of learning contexts consisting
of algorithms, hyperparameters, and/or environments.
Consider a sample of : .

We define a reward function to be overfit with
respect to the sample if there exists another reward
function such that:

A Practical Test for Overfitting

Consider a second distribution sample: .

Consider a sample of : .

A Practical Test for Overfitting

We define a reward function to be overfit with
respect to the sample if there exists another reward
function such that:

Consider a second distribution sample: .

Consider a sample of : .

Computational Experiments: Setup

Tested reward functions consist of:

Where a, b, c, d ∈ [-1,1].

We test 5,196 different reward functions
of this form.

a
b

c
d

H1: Reward functions that achieve the best
performance in one learning context can be
suboptimal in another.

Overfitting in Parallel Coordinate Plots
Cu

m
ul

at
iv

e
Pe

rf
or

m
an

ce

(M
)

Distribution Sample

Intersections indicate
overfitting.

H1: Reward functions that achieve the best
performance in one learning context can be
suboptimal in another.

For all experiments, we find
the best performing reward
functions differ across
learning contexts.

This is evidence of
overfitting.

H2: The cumulative performances achieved with
different reward functions are uncorrelated across
different learning contexts.

We rank all reward functions for
each experiment setting (&).

H2: The cumulative performances achieved with
different reward functions are uncorrelated across
different learning contexts.

Cu
m

ul
at

iv
e

Pe
rf

or
m

an
ce

(M

)

Distribution Sample

1

3

2

1

3

2

H2: The cumulative performances achieved with
different reward functions are uncorrelated across
different learning contexts.

We rank all reward functions for
each experiment setting (&).

We compare the ordering of these
rankings using Kendall’s tau.

Cu
m

ul
at

iv
e

Pe
rf

or
m

an
ce

(M

)

Distribution Sample

1

3

2

1

3

2

H2: The cumulative performances achieved with
different reward functions are uncorrelated across
different learning contexts.

We rank all reward functions for
each experiment setting (&).

We compare the ordering of these
rankings using Kendall’s tau.

We find that these rankings are
uncorrelated (|tau| < 0.1)

H2: The cumulative performances achieved with
different reward functions are uncorrelated across
different learning contexts.

We rank all reward functions for
each experiment setting (&).

We compare the ordering of these
rankings using Kendall’s tau.

We find that these rankings are
uncorrelated (|tau| < 0.1) or
slightly correlated (|tau| < 0.2).

Conclusion?

Overfitting to hyperparameters (and deep RL
algorithms) is a concern.

Controlled Observation User Study (n=30)

User Study Conducted in Jupyter Notebooks

User Study Conducted in Jupyter Notebooks

User Study Conducted in Jupyter Notebooks

User Study Conducted in Jupyter Notebooks

Experts Overfit Reward Functions, too

User P20 first tried a reward
function which achieved
M=138,092 with DDQN.

They ultimately selected a
different reward function, which
achieved M=1,031 with DDQN.

Experts Overfit Reward Functions, too

68% of users overfit
reward functions

User P20 first tried a reward
function which achieved
M=138,092 with DDQN.

They ultimately selected a
different reward function, which
achieved M=1,031 with DDQN.

Experts are currently bad at writing reward functions.

Experts are currently bad at writing reward functions.

Hard configuration
(15 steps between water & food)

Easy configuration
(5 steps between water & food)

Experts are currently bad at writing reward functions.

53% of RL experts wrote reward
functions which failed to encode the
task in the hard case.

Hard configuration
(15 steps between water & food)

Experts are currently bad at writing reward functions.

53% of RL experts wrote reward
functions which failed to encode the
task in the hard case.

For example, P3’s reward function:

Hard configuration
(15 steps between water & food)

Most experts (83%) use
a myopic design strategy.

“It’s best to not be hungry and thirsty, so I’ll
set that to the max, 1. Being not thirsty is
better than being not hungry. Worst is at

hungry AND thirsty; setting that to -1”

-P25

People are bad at reasoning
about reward accumulation.

Takeaways
Reward functions can be overfit to learning algorithms.

Takeaways
Reward functions can be overfit to learning algorithms.

Practitioners should construct two reward functions:
one for learning and one for evaluating.

Takeaways
Reward functions can be overfit to learning algorithms.

Practitioners should construct two reward functions:
one for learning and one for evaluating.

We should work to support human reward designers
by aligning reward design & the RL objective.

Limitations & Future Work

Only tested with one domain!

Limitations & Future Work

Only tested with one domain!

Can alternative models of reward help?

Limitations & Future Work

Only tested with one domain!

Can alternative models of reward help?

How has overfitting affected the research record?

The Perils of Trial-and-Error Reward Design

Julie Shah Alessandro AllieviBrad Knox Peter StoneScott NiekumSerena Booth

AAAI 2023

Code: github.com/serenabooth/reward-design-perils

Contact: sbooth@mit.edu

mailto:sbooth@mit.edu

	The Perils of Trial-and-Error Reward Design: �Misdesign Through Overfitting and �Invalid Task Specifications
	Imagine you want to design a new environment for using or benchmarking RL. ��
	Imagine you want to design a new environment for using or benchmarking RL. ��How do you approach this?
	A trial-and-error process
	A trial-and-error process
	A trial-and-error process
	A trial-and-error process
	����This trial-and-error process is common.����
	We surveyed 24 expert RL practitioners; �92% used trial-and-error to design their most recent reward function.
	“The reward signal is your way of communicating to the agent what you want achieved, not how you want it achieved”��- Sutton & Barto
	For a Dyna-Q+ agent, Sutton & Barto �replace the reward function r with r + κ τ . ��(This additional term encourages exploration.)
	Why does reward design practice matter?��
	Why does reward design practice matter?��Why be concerned about trial-and-error?
	Slide Number 14
	Slide Number 15
	Slide Number 16
	Slide Number 17
	Slide Number 18
	Slide Number 19
	Slide Number 20
	Slide Number 21
	Slide Number 22
	We study the implications of �trial-and-error reward design. ���
	We study the implications of �trial-and-error reward design. ��We do so with both computational studies and controlled observation user studies.
	Slide Number 25
	Slide Number 26
	Slide Number 27
	Slide Number 28
	Slide Number 29
	Slide Number 30
	Slide Number 31
	Slide Number 32
	Slide Number 33
	Slide Number 34
	Slide Number 35
	Slide Number 36
	Slide Number 37
	Slide Number 38
	Slide Number 39
	Slide Number 40
	Slide Number 41
	Slide Number 42
	Slide Number 43
	Slide Number 44
	Slide Number 45
	H1: Reward functions that achieve the best performance in one learning context can be suboptimal in another.�
	Overfitting in Parallel Coordinate Plots
	H1: Reward functions that achieve the best performance in one learning context can be suboptimal in another.�
	H2: The cumulative performances achieved with different reward functions are uncorrelated across different learning contexts.�
	H2: The cumulative performances achieved with different reward functions are uncorrelated across different learning contexts.�
	H2: The cumulative performances achieved with different reward functions are uncorrelated across different learning contexts.�
	H2: The cumulative performances achieved with different reward functions are uncorrelated across different learning contexts.�
	H2: The cumulative performances achieved with different reward functions are uncorrelated across different learning contexts.�
	Conclusion? ��Overfitting to hyperparameters (and deep RL algorithms) is a concern.
	Controlled Observation User Study (n=30)
	User Study Conducted in Jupyter Notebooks
	User Study Conducted in Jupyter Notebooks
	User Study Conducted in Jupyter Notebooks
	User Study Conducted in Jupyter Notebooks
	Experts Overfit Reward Functions, too
	Experts Overfit Reward Functions, too
	Slide Number 62
	Slide Number 63
	Slide Number 64
	Slide Number 65
	Slide Number 66
	Slide Number 67
	Slide Number 68
	Slide Number 69
	Slide Number 70
	Slide Number 71
	Slide Number 72
	Slide Number 73
	Slide Number 74
	The Perils of Trial-and-Error Reward Design

