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A trial-and-error process

Step 1: Design a candidate MDP

Step 2: Pick an RL algorithm for testing 

Step 3: Learn a policy 

Step 4: If the policy isn’t right, update the MDP 
(especially the reward function) and repeat



This trial-and-error process is common.



We surveyed 24 expert RL practitioners; 
92% used trial-and-error to design their 

most recent reward function.



“The reward signal is your way of 
communicating to the agent what you want 

achieved, not how you want it achieved”

- Sutton & Barto



For a Dyna-Q+ agent, Sutton & Barto
replace the reward function r with r + κ τ. 

(This additional term encourages exploration.)
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Why be concerned about trial-and-error?



A Known Concern: Unsafe Shaping

Ng, Harada, and Stuart, 1999

Potential-based shaping is 
known to be safe*, 
meaning optimal policies 
are unchanged.

* Under some assumptions



A Known Concern: Unsafe Shaping

Ng, Harada, and Stuart, 1999

Potential-based shaping is 
known to be safe*, 
meaning optimal policies 
are unchanged.

But trial-and-error reward 
shaping is typically not
potential-based.

* Under some assumptions
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A Known Concern: Misspecification

Amodei et al., 2016; Knox et al., 2021

Reward functions are 
often wrong and/or 
underspecified. 

Does trial-and-error 
reward design make this 
problem worse?
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algorithms and hyperparameters?
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A New Concern: Overfitting
Can reward functions be overfit to learning 
algorithms and hyperparameters?



We study the implications of 
trial-and-error reward design. 



We study the implications of 
trial-and-error reward design. 

We do so with both computational studies
and controlled observation user studies. 
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On the Shoulders of Giants…
Optimizing Rewards for Learning Reward Misdesign

Reward Function Inference

Singh 2009, Where Do Rewards 
Come From? 
Faust 2019, Evolving Rewards to 
Automate Reinforcement Learning

Amodei 2016, Concrete Problems in 
AI Safety
Knox 2021, Reward (Mis)Design for 
Autonomous Driving

RL Reproducibility

Henderson 2018, Deep 
Reinforcement Learning that Matters
Engstrom 2019, Implementation 
Matters in Deep RL

Hadfield-Menell 2016, Inverse 
Reward Design
He 2021, Assisted Robust Reward 
Design
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Hungry Thirsty Domain

Food in one random corner; water in 
another.

The goal is to eat as much as possible, 
but the agent can only eat if not thirsty.

If the agent drinks, it becomes not 
thirsty. If the agent doesn’t drink, it 
becomes thirsty with 10% probability.

Singh et al., 2009, Where Do Rewards Come From?



Hungry Thirsty Reward Functions
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Hungry Thirsty Reward Functions

State consists of x-y coordinates, 
hunger status (H), and thirst status (T). 

Unshaped reward function (sparse): 

Unsafely shaped reward function:

Singh et al., 2009, Where Do Rewards Come From?
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Hungry Thirsty True Performance Metric

True performance metric is the 
number of timesteps not hungry: 
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A Practical Test for Overfitting

We define a reward function       to be overfit with 
respect to the sample       if there exists another reward 
function       such that:

Consider a second distribution sample:                 . 

Consider a sample of      :                 .



Computational Experiments: Setup

Tested reward functions consist of:

Where a, b, c, d ∈ [-1,1].

We test 5,196 different reward functions 
of this form.

a
b

c
d



H1: Reward functions that achieve the best 
performance in one learning context can be 
suboptimal in another.



Overfitting in Parallel Coordinate Plots
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Intersections indicate 
overfitting. 



H1: Reward functions that achieve the best 
performance in one learning context can be 
suboptimal in another.

For all experiments, we find 
the best performing reward 
functions differ across 
learning contexts.

This is evidence of 
overfitting.



H2: The cumulative performances achieved with 
different reward functions are uncorrelated across 
different learning contexts.
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H2: The cumulative performances achieved with 
different reward functions are uncorrelated across 
different learning contexts.

We rank all reward functions for 
each experiment setting (     &      ). 

We compare the ordering of these 
rankings using Kendall’s tau. 
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H2: The cumulative performances achieved with 
different reward functions are uncorrelated across 
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We rank all reward functions for 
each experiment setting (     &      ). 

We compare the ordering of these 
rankings using Kendall’s tau. 

We find that these rankings are 
uncorrelated (|tau| < 0.1)



H2: The cumulative performances achieved with 
different reward functions are uncorrelated across 
different learning contexts.

We rank all reward functions for 
each experiment setting (     &      ). 

We compare the ordering of these 
rankings using Kendall’s tau. 

We find that these rankings are 
uncorrelated (|tau| < 0.1) or 
slightly correlated (|tau| < 0.2).   



Conclusion? 

Overfitting to hyperparameters (and deep RL 
algorithms) is a concern.
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Experts Overfit Reward Functions, too 

User P20 first tried a reward 
function which achieved 
M=138,092 with DDQN. 

They ultimately selected a 
different reward function, which 
achieved M=1,031 with DDQN. 



Experts Overfit Reward Functions, too 

68% of users overfit 
reward functions 

User P20 first tried a reward 
function which achieved 
M=138,092 with DDQN. 

They ultimately selected a 
different reward function, which 
achieved M=1,031 with DDQN. 
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Experts are currently bad at writing reward functions. 

Hard configuration
(15 steps between water & food)

Easy configuration
(5 steps between water & food)



Experts are currently bad at writing reward functions. 

53% of RL experts wrote reward 
functions which failed to encode the 
task in the hard case.

Hard configuration
(15 steps between water & food)



Experts are currently bad at writing reward functions. 

53% of RL experts wrote reward 
functions which failed to encode the 
task in the hard case.

For example, P3’s reward function: 

Hard configuration
(15 steps between water & food)



Most experts (83%) use
a myopic design strategy.



“It’s best to not be hungry and thirsty, so I’ll 
set that to the max, 1. Being not thirsty is 
better than being not hungry. Worst is at 

hungry AND thirsty; setting that to -1”

-P25



People are bad at reasoning 
about reward accumulation.
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Reward functions can be overfit to learning algorithms. 
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Takeaways
Reward functions can be overfit to learning algorithms. 

Practitioners should construct two reward functions: 
one for learning and one for evaluating.

We should work to support human reward designers 
by aligning reward design & the RL objective. 
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Limitations & Future Work

Only tested with one domain!

Can alternative models of reward help?

How has overfitting affected the research record?
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